Wang Sibao Lab


Emerging challenges for mosquito-borne disease control and the promise of symbiont-based transmission-blocking strategies

Gao, H., Hu, W., Cui, C., Wang, Y., Zheng, Y., Jacobs-Lorena, M., & Wang, SB.*

PLoS pathogens. 2025, 21(8):e1013431. https://doi.org/10.1371/journal.ppat.1013431


Engineering insect-microbe symbiosis: synthetic microbial communities for sustainable insect management

Ye, F., Wang, SB.*, Zheng H.*

Trends in Parasitology. 2025, 41(8):613-616. https://doi.org/10.1016/j.pt.2025.06.003


Host complement C3 promotes malaria transmission by killing symbiotic bacteria in the mosquito midgut

He, B., Li, M., Guo, S., Zhu, F., Jiao, Z., Li, J., Tan, N., Jiao, S., Liu, T., Zhang, J., Fan, Y., Gao, Y., Zhou, T., Li, J., Huang, W., Jiang, L., Lin, Z., Wang, SB., Xu, W.

Proceedings of the National Academy of Sciences. 2025, 122(22):e2424570122. https://doi.org/10.1073/pnas.2424570122


Harnessing engineered symbionts to combat concurrent malaria and arboviruses transmission

Hu, W., Gao, H., Cui, C., Wang, L., Wang, Y., Li, Y., Li, F., Zheng, Y., Xia, T., & Wang, SB.*

Nature Communications. 2025, 16(1):2104. https://doi.org/10.1038/s41467-025-57343-2


Identification of a longevity gene through evolutionary rate covariation of insect mito-nuclear genomes

Tao, M., Chen, J., Cui, C., Xu, Y., Xu, J., Shi, Z., Yun, J., Zhang, J., Ou, GZ., Liu, C., Chen, Y., Zhu, ZR., Pan, R., Xu, S., Chen, XX., Rokas, A., Zhao, Y., Wang, SB.*, Huang, J.*, Shen, XX.*

Nature Aging. 2024, 4(8):1076-1088. https://doi.org/10.1038/s43587-024-00641-z


Unveiling a novel entry gate: Insect foregut as an alternative infection route for fungal entomopathogens

Lai, Y.#, Zheng, W.#, Zheng, Y.#, Lu, H.#, Qu, S., Wang, L., Li, M., & Wang, SB.*

The Innovation. 2024, 5(4). https://doi.org/10.1016/j.xinn.2024.100644


Epigenetic Regulation in Insect–Microbe Interactions

Lai, Y., & Wang, SB.*

Annual Review of Entomology. 2024, 70. https://doi.org/10.1146/annurev-ento-022724-010640


Quorum sensing-activated phenylalanine metabolism drives OMV biogenesis to enhance mosquito commensal colonization resistance to Plasmodium

Jiang, Y.#, Gao, H.#, Wang, L., Hu, W., Wang, G., & Wang, SB.*

Cell Host & Microbe. 2023, 31(10):1655-1667. https://doi.org/10.1016/j.chom.2023.08.017


Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway

Gao, H.#, Jiang, Y.#, Wang, L.#, Wang, G., Hu, W., Dong, L., & Wang, SB.*

Nature Communications. 2023, 14(1):5157. https://doi.org/10.1038/s41467-023-40887-6


Engineered gut symbiotic bacterium-mediated RNAi for effective control of Anopheles mosquito larvae

Ding, J.#, Cui, C.#, Wang, G.#, Wei, G., Bai, L., Li, Y., Sun, P., Dong, L., Liu, Z., Yun, J., Li, F., Li, K., He, L., & Wang, SB.*

Microbiology Spectrum. 2023, 11(4):e01666-23. https://doi.org/10.1128/spectrum.01666-23


The ASH1–PEX16 regulatory pathway controls peroxisome biogenesis for appressorium-mediated insect infection by a fungal pathogen

Wang, L.#, Lai, Y.#, Chen, J., Cao, X., Zheng, W., Dong, L., Zheng, Y., Li, F., Wei, G., & Wang, SB.*

Proceedings of the National Academy of Sciences. 2023, 120(4):e2217145120. https://doi.org/10.1073/pnas.2217145120


Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy

Cui, C.#, Wang, Y.#, Li, Y., Sun, P., Jiang, J., Zhou, H., Liu, J.*, & Wang, SB.*

Cell Reports. 2022, 41(4):111527. https://doi.org/10.1016/j.celrep.2022.111527


Chemometrics and genome mining reveal an unprecedented family of sugar acid–containing fungal nonribosomal cyclodepsipeptides

Wang, C., Xiao, D., Dun, B., Yin, M., Tsega, A. S., Xie, L., Li, W., Yue, Q., Wang, SB., Gao, H., Lin, M., Zhang, L., Molnar, I., & Xu, Y.

Proceedings of the National Academy of Sciences. 2022, 119(32):e2123379119. https://doi.org/10.1073/pnas.2123379119


Regulatory roles of histone modifications in filamentous fungal pathogens

Lai, Y., Wang, L., Zheng, W., & Wang, SB.*

Journal of Fungi. 2022, 8(6):565. https://doi.org/10.3390/jof8060565


Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating

Wang, G.#, Vega-Rodríguez, J.#, Diabate, A.#, Liu, J.#, Cui, C., Nignan, C., Dong, L., Li, F., Ouedrago, CO., Bandaogo, AM., Sawadogo, PS., Maiga, H., Silva, TLA., Pascini, TV., Wang, SB.*, & Jacobs-Lorena, M*.

Science. 2021, 371(6527):411-441. https://doi.org/10.1126/science.abd4359


A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase

Gao, H.#, Bai, L.#, Jiang, Y., Huang, W., Wang, L., Li, S., Zhu, G., Wang, D., Huang, Z., Cao, J., Jiang, L., Jacobs-Lorena, M., Zhan, S., & Wang, SB.

Nature microbiology. 2021, 6(6):806-817. https://doi.org/10.1038/s41564-021-00899-8


Insects defend against fungal infection by employing microRNAs to silence virulence-related genes

Wang, Y.#, Cui, C.#, Wang, G., Li, Y., & Wang, SB.*

Proceedings of the National Academy of Sciences. 2021, 118(19):e2023802118. https://doi.org/10.1073/pnas.2023802118


Coordinated regulation of infection-related morphogenesis by the KMT2-Cre1-Hyd4 regulatory pathway to facilitate fungal infection

Lai, Y.#, Cao, X.#, Chen, J., Wang, L., Wei, G.*, & Wang, SB.*

Science Advances. 2020, 6(13):eaaz1659. https://doi.org/10.1126/sciadv.aaz1659


Mosquito microbiota and implications for disease control

Gao, H., Cui, C., Wang, L., Jacobs-Lorena, M.*, Wang, SB.*

Trends in parasitology. 2020, 36(2):98-111. https://doi.org/10.1016/j.pt.2019.12.001


Use of microbiota to fight mosquito-borne disease

Huang, W., Wang, SB., Jacobs-Lorena M

Frontiers in Genetics. 2020, 11:196. https://doi.org/10.3389/fgene.2020.00196


A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection

Cui, C.#, Wang, Y.#, Liu, J., Zhao, J., Sun, P., & Wang, SB.*

Nature communications. 2019, 10(1):4298. https://doi.org/10.1038/s41467-019-12323-1


A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses

Bai, L., Wang, L., Vega-Rodríguez, J., Wang, G., & Wang, SB.*

Frontiers in microbiology. 2019, 10:1580. https://doi.org/10.3389/fmicb.2019.01580


Interaction of entomopathogenic fungi with the host immune system

Qu, S., & Wang, SB.*

Developmental & Comparative Immunology. 2018, 83:96-103. https://doi.org/10.1016/j.dci.2018.01.010


Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria

Wang, SB.*, Dos-Santos, A. L., Huang, W., Liu, K. C., Oshaghi, M. A., Wei, G., Agre, P., & Jacobs-Lorena, M.*

Science. 2017, 357(6358):1399-1402. https://doi.org/10.1126/science.aan5478


Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality

Wei, G.#, Lai, Y.#, Wang, G.#, Chen, H., Li, F., & Wang, SB.*

Proceedings of the National Academy of Sciences. 2017, 114(23):5994-5999. https://doi.org/10.1073/pnas.1703546114


Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements

Wang, C., & Wang, SB.*

Annual review of entomology. 2017, 62(1):73-90. https://doi.org/10.1146/annurev-ento-031616-035509


In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito

Lai, Y., Chen, H., Wei, G., Wang, G., Li, F., & Wang, SB.*

Science China Life Sciences. 2017, 60:839-851. https://doi.org/10.1007/s11427-017-9101-3


CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana

Chen, JJ., Lai, YL., Wang, LL., Zhai, SZ., Zou, G., Zhou, ZH., Cui, CL.,Wang, SB.*

Scientific Reports. 2017, 7:45763. https://doi.org/10.1038/srep45763


Transmission Risk from Imported Plasmodium vivax Malaria in the China–Myanmar Border Region

Wang, D., Li, S., Cheng, Z., Xiao, N., Cotter, C., Hwang, J., Li, X., Yin, S., Wang, J., Bai, L., Zheng, Z., & Wang, SB.*

Emerging Infectious Diseases. 2015, 21(10):1861-1864. http://dx.doi.org/10.3201/eid2110.150679


Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris

Wang, YL,, Wang, ZX., Liu, C., Wang, SB.*, Huang, B.*

Fungal Biology. 2015, 119(12):1246-1254. https://doi.org/10.1016/j.funbio.2015.08.017


Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut

Vega-Rodríguez, J., Ghosh, AK., Kanzok, SM., Dinglasan, RR., Wang, SB., Bongio, NJ., Kalume, DE., Miura, K., Long, CA., Pandey, A., & Jacobs-Lorena, M.*

Proceedings of the National Academy of Sciences. 2014, 111(4):E492-E500. https://doi.org/10.1073/pnas.1315517111


Genetic approaches to interfere with malaria transmission by vector mosquitoes

Wang, SB.*, & Jacobs-Lorena, M*.

Trends in biotechnology. 2013, 31(3):185-193. https://doi.org/10.1016/j.tibtech.2013.01.001


Fighting malaria with engineered symbiotic bacteria from vector mosquitoes

Wang, SB., Ghosh, A. K., Bongio, N., Stebbings, K. A., Lampe, D. J., & Jacobs-Lorena, M

Proceedings of the National Academy of Sciences. 2012, 109(31):12734-12739. https://doi.org/10.1073/pnas.1204158109


Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations

Wang, SB., O’Brien, T. R., Pava-Ripoll, M., & St. Leger, R. J.

Proceedings of the National Academy of Sciences, 2011, 108(51):20449-20454. https://doi.org/10.1073/pnas.1113824108


Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars

Wang, SB., Fang, W., Wang, C., & St. Leger, R. J.

PLoS pathogens. 2011, 7(6):e1002097. https://doi.org/10.1371/journal.ppat.1002097


Comparative genomics using microarrays reveals divergence and loss of virulence associated genes in host specific strains of the insect pathogen Metarhizium anisopliae

Wang, SB., Leclerque, A., Pava-Ripoll, M., Fang, W., St Leger, RJ.

Eukaryotic Cell. 2009, 8(6):888-898. https://doi.org/10.1128/EC.00058-09

The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis

Liu, F.#, Wang, SB.#, Zhang, J., Zhang, J., Yan, X., Zhou, H., Zhao, G., & Zhou, Z.

Journal of Applied Microbiology. 2009, 106(3):952-966. https://doi.org/10.1111/j.1365-2672.2008.04064.x


Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (ISSR)

Wang, SB., Miao, X., Zhao, W., Huang, B., Fan, M., Li, Z., & Huang, Y.

Mycological Research. 2005, 109(12):1364-1372. https://doi.org/10.1017/S0953756205003709



Full List of the Wang Lab PubMed Articles ⇑



Transgenesis and paratransgenesis for the control of malaria.

Wang SB* and Jacobs-Loren M*.

In: Carballar-Lejarazú, R. (Ed.). doi.org/10.1201/9781003308775


Paratransgenesis applications: fighting malaria with engineered mosquito symbiotic bacteria

Wang SB, Jacobs-Lorena M.

Arthropod Vector: Vol 1/Vector Microbiome and Innate Immunity of Arthropods. Academic Press, pp.219-234. ISBN-13: 978-0128053508 2017/5/11

The use of semiochemicals and the fungus Beauveria bassiana to control the vector beetle Monochamus alternatus of pine wilt disease

Wang, SB., Zhu, X., Huang, Y.

Chemical ecology of wood-boring insects (pp.80-98). Tsukuba: The Forestry and Forest Products Research Institute.