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[ABSTRACT]
Chikungunya) pose major threats to global public health, while traditional control methods based on

Mosquito-borne diseases (such as malaria, dengue fever, Zika virus disease, and

chemical pesticides face severe challenges including enhanced drug resistance in vector mosquitoes and
environmental pollution. Genetic control strategies have become high-potential alternative solutions for
mosquito control due to their species specificity and environmental friendliness. Gene drive technology
uses gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated nuclease 9 (Cas9) to enable specific genes to efficiently spread in target mosquito
populations through "super-Mendelian inheritance", offering a revolutionary strategy for the prevention
and control of mosquito-borne diseases. This review systematically summarizes key advances, core
challenges, and response strategies of gene drive technology in this field. Research advances: (1) In
Anopheles malaria vectors, population suppression drives targeting sex determination genes or female
reproductive genes can cause female sterility or skewed sex ratios to achieve population suppression.
Population replacement gene drive strategies targeting host genes associated with Plasmodium infection
or delivering anti-Plasmodium effector molecules in Anopheles can effectively block pathogen
transmission. (2) In Aedes mosquito vectors of arboviruses, targeting female flight-essential genes achieves
population suppression, and coupling of antiviral effector systems with drive elements is explored.
Optimized split gene drive strategies demonstrate high cutting and recombination efficiency, and models
predict safe and controllable spread of disease-resistance traits. (3) In Culex mosquitoes transmitting
lymphatic filariasis, homology drive elements are integrated into two genes involved in the eye pigment
synthesis pathway, allowing clear visualization of gene drive efficiency through eye color. Core Challenges:
technological challenges include low homologous recombination repair efficiency, non-homologous end
joining repair causing resistance allele generation, CRISPR/Cas9 off-target effects, and species adaptation
differences. Ecological and safety challenges involve gene pool pollution caused by accidental spread of
drive elements, potential ecological balance impacts, and long-term irreversible risks. Response strategies
and prospects: employing multiplex guide RNA (gRNA) targeting strategies to enhance drive stability and
combat potential resistance. Developing reversible designs such as synthetic resistance, reversal drives,
and immunizing reversal drives as "genetic brakes". Establishing long-term ecological monitoring systems
and mathematical modeling for risk assessment. Exploring "environmentally responsive drives" to enhance
controllability. Future research should continuously optimize drive efficiency and specificity, deepen
ecological risk evaluation, strengthen international cooperation, and promote ethical consensus and
regulatory framework construction, with the aim of making gene drive technology a sustainable prevention
and control strategy to address the global health challenge of mosquito-borne diseases under the premise
of safety and controllability.
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Table1 Main advances of gene drive technology in mosquito-borne disease control

B R oty HEEehEE 2E 3k
Mosquito species Target Gene drive type Reference
XL iR iy ribosomal gene WD ENSHER IR Galizi R, et al. (2014)??

Anopheles gambiae doublesex
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cardinal

single chain variable fragment

Hi 1R Y doublesex
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R ZZ IR Saglin
Anopheles coluzzii
MBI cardinal, white,
Culex quinquefasciatus kynurenine 3-monooxygenase
B AR AeAct-4, myo-fem
Aedes aegypti white

inverted repeat RNA

single chain variable fragment
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CRISPR/Cas9 N Sa9E E IR &
CRISPR/Cas9 M SHIEE IRz

CRISPR/Cas9 M SHIEE IR N
CRISPR/Cas9 M SHIEFE IRz
CRISPR/Cas9 M SHE R IXzN
CRISPR/Cas9 " S E F IR
FEZEBREN SHERIRK

HEFNSOEREN

Kyrou K, et al. (2018)"®!
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