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Abstract

Mosquitoes serve as vectors for a variety of pathogens that cause life-threatening
diseases, such as malaria, dengue, Zika, and yellow fever. With the rise of antimalar-
ial drug resistance and a lack of therapeutics or prophylactics for dengue and Zika,
current disease control strategies rely heavily on mosquito population management.
However, the effectiveness of conventional approaches is increasingly compromised,
highlighting an urgent need for innovative tools to combat mosquito-borne diseases.
One promising strategy for blocking the transmission of these diseases is to populate
mosquitoes with anti-pathogen gut symbionts. Here, we discuss the major challenges
facing current mosquito-borne disease control efforts and explore how mosquito gut
microbiota-based control strategies may address them. We highlight recent advances
that may accelerate field applications and offer perspectives on future directions and
the translational potential of symbiont-based strategies for mitigating mosquito-borne
disease transmission.

1. Introduction

Mosquitoes are vectors of a wide range of pathogens responsible for major

global diseases, including malaria, dengue, Zika, yellow fever, and lymphatic fil-
ariasis, threatening the health of over half the world’s population [1]. Traditional
mosquito-borne disease (MBD) control strategies have primarily relied on vector
management approaches, such as the use of chemical insecticides, environmental
management, and protective measures like bed nets and repellents [2,3]. However,
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the effectiveness of these interventions is increasingly undermined by the rapid
emergence of insecticide resistance [4,5], altered mosquito behaviors (e.g., outdoor
or early biting) [6], and the global spread of invasive mosquito species [7,8]. As
such, the incidence and geographic distribution of MBDs continue to expand (Fig 1),
necessitating the urgent need for innovative, effective, and sustainable intervention
strategies.

Current malaria control efforts, while currently effective in most regions, have
recently stalled due to the emergence and spread of artemisinin-resistant Plasmo-
dium parasites in Southeast Asia and Africa, which have complicated traditional treat-
ment and intervention programs [9,10]. Although progress has been made in vaccine
development (e.g., RTS,S and R21 candidate [11]) and next-generation antimalarial
drugs (e.g., KAF156 and DSM265 [12]), their moderate efficacy, limited production
capacity, and delivery hurdles mean they alone cannot secure elimination, underscor-
ing the need for the introduction of innovative and integrated approaches to achieve
long-term malaria elimination goals.

Meanwhile, the global burden of arbovirus diseases—including dengue, chikun-
gunya, Zika, and West Nile virus—continues to rise, characterized by unprecedented
case numbers and expanding geographical distributions [13—16]. Although vaccines
such as Dengvaxia and Qdenga have been licensed for dengue control, their impact
has been limited due to factors including suboptimal vaccine coverage, serotype-
specific protection, and the risk of antibody-dependent enhancement [15,17]. In
2024, more than 14 million dengue cases and over 10,000 dengue-associated deaths
were reported globally, exceeding all previous records [13]. Moreover, overlapping
distributions of Anopheles and Aedes mosquitoes in many endemic regions facilitate
concurrent transmission of multiple pathogens (Fig 2), leading to co-infections involv-
ing malaria, arboviruses, intestinal parasites, and other pathogenic microorganisms
[18-22], further complicating disease diagnosis and treatment of MBDs. Furthermore,
emerging pathogens such as Plasmodium knowlesi [23], Oropouche virus [24], and
newly identified mosquito-associated Rickettsia species [25] further complicate the
landscape of MBD control.
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Fig 1. Annual malaria and dengue cases during the past two decades. Data adapted from WHO
malaria report and dengue record [13,94]. The asterisks indicate estimated data (by website https://vizhub.
healthdata.org/) as they are currently not available from WHO.

https://doi.org/10.1371/journal.ppat.1013431.9001
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Fig 2. Global concurrent distribution map of malaria, dengue, and Zika diseases from years 2021 to 2024. Data adapted from WHO malaria
report and dengue record. The world map was created using R package “rnaturalearth” (https://docs.ropensci.org/rnaturalearth/).

https://doi.org/10.1371/journal.ppat.1013431.9002

Limitations in MBD control are largely attributed to inadequate intervention measures, insufficient and unstable
funding, and the emergence of new challenges to vector control efforts (Fig 3). A key contemporary challenge is the
expansion of invasive mosquito species, fueled by global trade, urbanization, and climate change. For instance, mod-
eling studies suggest that warming temperatures may facilitate the establishment of Aedes aegypti in southern Europe
and the US Midwest by 2050 [26,27], while Anopheles stephensi has already begun spreading into urban areas of
the Horn of Africa [28,29]. These emerging situations may exacerbate disease transmission and undermine existing
control infrastructures [30—33]. Moreover, sustained vector control pressure has led to significant changes in mosquito
behavior, reducing the efficacy of conventional indoor-targeted interventions such as insecticide-treated nets and
indoor residual spraying [34,35]. For example, Anopheles funestus populations in East Africa have increasingly shifted
to outdoor biting in the early evening [36], while Ae. aegypti in temperate regions has expanded its feeding activity to
dawn and dusk hours [37,38]. Global warming and extreme climate events further complicate control by expanding
mosquito habitats, enhancing pathogen replication rates, and disrupting established intervention programs [39,40].
Compounding these biological and environmental challenges, shifting national policy priorities and reduced donor
commitment have led to inconsistent funding and diminished political will, threatening the continuity and coordination
of global MBD control programs.

Recent efforts have increasingly focused on leveraging the mosquito microbiota, given its crucial role in shaping vector
competence for pathogens such as Plasmodium and various arboviruses [41-46]. Symbiont-based transmission-blocking
strategies, or paratransgenesis—where mosquitoes are colonized with either natural or genetically modified microbes
that interfere with pathogen development—have emerged as promising, cost-effective tools for disease control [47—49].
Several recent reviews have summarized the progress of symbiont-based approaches [50-52], highlighted the microbial
diversity in insect vectors [53—-55], and examined the complex tripartite interactions among gut microbes, vectors, and
pathogens [53,56-58]. While considerable progress has been made in laboratory and semi-field studies, further work is
needed to optimize microbiota-based interventions for field-scale applications.
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Fig 3. Emerging challenges to mosquito-borne disease (MBD) control. Present MBD control strategies (blue numbered) and emerging challenges
that may reduce their effectiveness.

https://doi.org/10.1371/journal.ppat.1013431.9003

In this review, we focus specifically on strategies involving the manipulation of mosquito gut microbiota for the con-
trol of MBDs. We do not elaborate on Wolbachia- or Microsporidium-based approaches, as these have been discussed
elsewhere [59—61]. Instead, we critically examine the promises and limitations of gut microbiota-based interventions,
emphasizing recent advances, regulatory concerns, and practical considerations for achieving sustainable, large-scale
implementation in endemic settings.

2. Conceptual shift

Population suppression of mosquitoes remains the main strategy to curb MBDs. Chemical insecticides are widely used for
rapid response, especially during outbreaks. However, mosquitoes rapidly evolve multiple and complex resistance mech-
anisms that can outpace the development of new insecticidal compounds [62]. In addition, the overuse of insecticides
raises concerns about off-target effects on beneficial insects, potential ecological imbalances, and risks to human health.
These challenges underscore the urgency of transitioning from single-mode chemical control to a diversified, biologically
informed toolbox aimed at reducing mosquito populations or curbing their vector competence through more sustainable
and ecologically compatible approaches.

2.1. Alternative strategies to suppress mosquito populations

In recent years, several strategies have been developed to suppress mosquito populations, including the release of
Wolbachia-infected or irradiated sterile males [63], the use of entomopathogenic fungi [64], and genetically modified mos-
quitoes combined with gene-drive systems [65]. Among these, Wolbachia-based and sterile male release strategies have
been implemented in countries such as Singapore, Mexico, and Brazil, showing strong efficacy in reducing MBD trans-
mission [61]. Entomopathogenic fungus and gene-drive strategies have also shown promising results in laboratory and
semi-field settings. However, each approach faces distinct challenges.
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2.2. Reducing vector competence

Given the limitations of existing MBD control measures and the emergence of new challenges, there is growing interest in
developing sustainable, versatile, ecologically friendly, and low-cost strategies. Efforts to eradicate mosquito populations
have proven to be technically challenging and to raise ecological concerns. As a result, reducing vector competence—the
ability of mosquitoes to transmit pathogens—has emerged as a more pragmatic and targeted approach (Fig 4). This par-
adigm shift aligns with the broader principles of the “One Health” framework, which emphasizes the interconnectedness
of human, animal, and environmental health. Rather than seeking to eradicate mosquitoes, rendering them refractory to
pathogen infection and thereby blocking disease transmission represents a sustainable strategy for MBD control. Hetero-
geneity in vector competence arises from a complex interplay among genetic background, microbiota composition, and
environmental factors. Notably, the mosquito’s holometabolous life cycle sustains a dynamic and highly diverse microbial
community, which contributes to digestion, nutrition, growth, fertility, and immune defense [66,67]. The intimate relation-
ship between mosquitoes and their microbiota, together with conclusive evidence that microbial constituents strongly
shape mosquito competence, underscores the potential for microbiota-driven approaches to MBD prevention.

3. Mosquito microbiota

Mosquito-associated microbes, whether residing in the gut lumen or as endosymbionts, can profoundly modulate vector
competence by affecting pathogen replication and survival within the mosquito. Certain bacterial communities or strains
can inhibit parasites or arboviruses by occupying binding sites or secreting antimicrobial factors, while also priming the
mosquito’s innate immune pathways (such as Toll, IMD, and JAK/STAT) to curb infection. Notably, most of the mosquito
microbiota resides in the lumen of the midgut, the site of the initial pathogen entry into the mosquito. This potential direct
bacteria-pathogen interaction makes the midgut compartment a prime target for MBD intervention. Symbiotic control

of MBDs has been under development for two decades and has shown much promise in the laboratory. Here we focus
on the historical development of this strategy, highlighting recent progress of this approach, and the promises of these
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Fig 4. A summary of current MBD control concepts and strategies. Current MBD control strategies are based on two concepts: suppression of mos-
quito populations (kill strategy) and reduction of vector competence (refractory strategy). IRS: indoor residual spraying; LLIN: long-lasting insecticidal net.

https://doi.org/10.1371/journal.ppat.1013431.9004
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advances to address the challenges of MBD control. Mosquito gut bacterial strains that suppress pathogen development
are listed in Table 1. As this review focuses specifically on gut bacteria-based strategies, Table 1 does not include intracel-
lular Wolbachia [51,59—-61], entomopathogenic fungi [64,68], Microsporidium [69], or insect-specific virus [70,71].

3.1. Paratransgenesis

One primary symbiotic control strategy, commonly referred to as paratransgenesis, uses genetically modified microbes
to inhibit pathogen transmission by the vector. The concept was first introduced in the 1990s, when Rhodococcus rhodnii
bacterium—a gut symbiont of the Chagas disease vector Rhodnius prolixus—was engineered to produce antimicrobial
peptides that inhibit Trypanosoma cruzi development [72,73]. This approach was later adapted to mosquitoes using
engineered Escherichia coli, Asaia, and Pantoea bacteria to express lytic peptides (scorpine, shiva1, etc.) targeting
Plasmodium parasites, or peptides disrupting Plasmodium ookinete infection (SM1 and MP2, etc.), to block Plasmodium

Table 1. Mosquito gut bacterial strains that suppress pathogens and published in the past two decades.

Mosquito Bacteria strain Effectors Function Semi-field test Refs

species

Genetically modified bacteria

An. stephensi E. coli scFv Inhibits P. berghei / [74]

An. stephensi E. coli SM1 and Inhibits P. berghei / [95]
phospholipase-A(2)

An. gambiae Pantoea agglomerans | scorpine, EPIP, Shiva-1, Inhibits P. falciparum and P. berghei / [47]
mPLA2, Pro:EPIP

An. stephensi Serratia marcescens MP2, scorpine, Shiva1, Inhibits P. falciparum / [48]

AS1 mPLA2, EPIP
An. stephensi Asaia scorpine Inhibits P. berghei under bloodmeal / [75]

promoter

Inhibits DENV, ZIKV, P. falciparum and
P. berghei under bloodmeal promoter

An. stephensi Serratia marcescens
Ae. aegypti AS1

DN59, Z2 scorpine,
Shiva-1

Semi-field big cage trial [76]
conducted in China

Ae. albopictus

Natural bacteria

An. albimanus Serratia marcescens, |/ Inhibits P. vivax infection / [96]
Enterobacter cloa-
cae, Enterobacter
amnigenus
An. gambiae Enterobacter (Esp_Z) |Induce ROS production Inhibits P. falciparum / [43]
An. stephensi Asaia SF2.1 Activate mosquito Inhibits P. berghei / [97]
An. gambiae immunity
An. stephensi Serratia marcescens / Inhibits P. berghei / [82]
HB3
An. stephensi Serratia marcescens Activate mosquito Inhibits P. berghei / [41,98]
An. gambiae Y1 and Serratia ureilyt- | immunity
ica Su_YN3
An. stephensi Serratia ureilytica Secreted lipase AmLip and | Lysis P. falciparum and P. berghei Ongoing semi-field trials [41]
An. gambiae Su_YN1 outer membrane vesicles conducted in Burkina Faso
An. stephensi Delftia tsuruhatensis Secreted hydrophobic Inhibits the development of female Semi-field trials conducted | [44]
An. gambiae TC1 molecule harmane Plasmodium parasite gametes in Burkina Faso
Ae. albopictus Rosenbergiella_YN46 | glucose dehydrogenase Inhibits DENV and ZIKV. Semi-field greenhouse test | [45]
Ae. aegypti (RyGDH) conducted in China
An. gambiae Chromobacteriumsp. / Kills adult mosquitoes Enclosed field trials con- [99]
Panama (Csp_P) ducted in Burkina Faso
https://doi.org/10.1371/journal.ppat.1013431.t001
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transmission by Anopheles mosquitoes [47,74,75]. Recent advances in this area include the use of Serratia strains that
are vertically and horizontally transmitted, and can spread through mosquito populations [48]. Additionally, blood meal-
inducible systems have been employed to drive the production of effector molecules in a temporally regulated manner,
thereby minimizing potential impacts on mosquito and bacteria fitness [75,76]. Genetic engineering of entomopatho-
genic fungi, such as Metarhizium anisopliae and Beauveria bassiana, was used to combine Plasmodium-killing with
mosquito-killing [77] or to enhance mosquito-killing efficacy [78].

Notably, no paratransgenic strategies have been specifically designed to target arboviruses so far, although such an
approach has been shown to work in honey bees, where genetically modified Apis mellifera symbionts deliver RNAi con-
structs to reduce virus infection [79]. Current approaches tend to focus on a single pathogen, or closely related patho-
gens, in a particular vector, although some effectors may have broader pathogen blocking activity. For instance, scorpine
and shiva1, two lytic peptides used in paratransgenic systems against Plasmodium parasites, may also target other
eukaryotic pathogens such as Wuchereria bancrofti [80]. A recent work by our group explored polyvalent paratransgenic
tools that simultaneously target multiple MBD pathogens, to address the concurrent transmission of malaria, dengue, and
Zika. We engineered the symbiotic bacterium Serratia AS1, which efficiently spreads through both Anopheles and Aedes
populations, to simultaneously produce anti-arbovirus and anti-Plasmodium effector molecules. Expression of these
effectors is tightly regulated by a blood meal-inducible promoter, ensuring activation only in the presence of a blood meal.
This selective and conditional expression strategy minimizes fithess costs to both the symbiont and the mosquito host,
while also reducing potential off-target effects on non-vector organisms. Laboratory and contained semi-field experiments
demonstrated that mosquitoes colonized with the engineered strain, AS1-TK, conferred strong refractoriness to Plasmo-
dium and arbovirus infections in Anopheles and Aedes mosquitoes, respectively [76]. This study establishes a foundation
for the use of pluripotent engineered symbiotic bacteria to combat the concurrent transmission of malaria and arbovirus
diseases by vector mosquitoes.

3.2. Natural bacteria

Paratransgenic approaches, which utilize genetically engineered symbiotic bacteria to deliver anti-pathogen effectors, have
shown great promise in laboratory setting. However, their translation to field application raises important biosafety and
regulatory concerns, particularly when translating from laboratory studies to field implementation. As a result, increasing
attention has been directed toward identifying naturally occurring symbiotic bacteria with inherent anti-pathogen activity

as a potentially more acceptable and scalable alternative. Early studies showed that depletion of the gut microbiota from
Anopheles mosquitoes often leads to increased Plasmodium parasite loads [81], implying that components of the native
microbiome may exert a protective effect, partially through the priming of basal immune responses. Several bacterial strains
have since been associated with reduced parasite burden. For instance, Serratia marcescens HB3 [82] and Enterobacter
sp. Esp_Z [43] have both been shown to inhibit Plasmodium development in the mosquito midgut. Microsporidia MB, a nat-
urally occurring symbiont in Anopheles mosquitoes that inhibits Plasmodium development, spreads through maternal inher-
itance and mating without harming mosquito fitness, offering the potential to curb malaria transmission [69]. More recently,
epidemiological analyses or laboratory observations of mosquito populations exhibiting high Plasmodium resistance have
led to the discovery of strains, such as Serratia ureilytica Su_YN1 (isolated from field-collected mosquitoes) [41] and Delftia
tsuruhatensis TC1 (isolated from laboratory-reared mosquitoes [44]). In both cases, the anti-Plasmodium effectors were
identified: Su_YN1 was found to secrete a lipase, while TC1 produces the small organic compound harmane. Notably,
Serratia Su_YN1 can be abundant in the Anopheles mosquito gut and spreads effectively via both horizontal and vertical
transmission (including transstadial passage). Furthermore, this Serratia outer membrane-mediated lipase delivery mecha-
nism [83], and quorum sensing-based colonization strategy [46] have been elucidated. Such detailed insights into how nat-
ural bacterial strains inhibit mosquito-borne pathogens will be instrumental in advancing the refinement of symbiotic control
approaches, thereby facilitating their deployment for malaria control and accelerating progress toward field implementation.
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The influence of mosquito gut microbiota on flavivirus transmission is complex and context-dependent. It was shown
that depletion of the gut microbiota from Ae. aegypti mosquitoes decrease DENV infectivity, leading to the identification of
certain Serratia strains that enhance mosquito permissiveness to arboviruses [84,85]. In contrast, our recent investigation
of Serratia strains isolated from Anopheles gut did not yield a significant impact on viral infection in Aedes mosquitoes,
suggesting that these effects are likely strain specific. While most gut bacteria appear to have minimal impact on vector
fitness or vector’s capacity to support pathogen development, a few bacterial strains from Aedes mosquitoes exhibit pro-
nounced effects. One example is Chromobacterium sp., a non-symbiotic environmental bacterium with entomopathogenic
properties. When introduced into mosquitoes via sugar meal, this bacterium was shown to inhibit both malaria parasites
and dengue viruses in mosquito vectors, while also significantly reducing mosquito survival [86]. Its mosquitocidal effects
underscore its potential as a biocontrol agent rather than a mutualistic symbiont. Another strain, Chromobacterium Csp_
BJ, was found to secrete the lipase CbAEs, which lyses viral envelopes [87]. Notably, our recent work identified a novel
anti-Plasmodium lipase from Serratia ureilytica Su_YN1 [41]. Rosenbergiella_YN46, isolated from field-collected Aedes
mosquitoes, was shown to suppress flavivirus transmission by acidifying the mosquito midgut. This effect is mediated by a
secreted glucose dehydrogenase, RyGDH, which inhibits viral infection of midgut epithelial cells [45].

3.3. Paratransgenesis or natural bacteria?

Both paratransgenesis and natural bacteria-based strategies offer unique advantages and face distinct challenges in
MBD control. Paratransgenesis leverages synthetic biology tools to engineer bacteria capable of producing multiple
pathogen-targeting effector molecules, providing flexibility and potential for targeting various pathogens simultaneously.
This strategy also allows fine-tuning of effector expression and delivery, which can enhance efficacy and minimize poten-
tial ecological concerns or reduce fithess impacts on the host mosquito. In contrast, naturally occurring bacterial strains
inherently colonize mosquito vectors and are typically viewed more favorably from a regulatory and public acceptance per-
spective, as they do not involve exogenous genetic modification. However, many of these gut bacteria exert their effects
through poorly understood bioactive molecules and mechanisms, and their pathogen-blocking effects may be less robust
than those achieved through engineered approaches.

Biosafety and regulatory considerations remain important for both strategies. Key concerns include off-target effects,
unintended interactions with non-target organisms, and the need for rigorous safety evaluation—particularly in the case
of engineered strains. Regulatory approval for paratransgenesis has historically been more complex due to the inclu-
sion of synthetic constructs and potential gene flow elements such as antibiotic resistance cassettes. Nevertheless, the
use of native symbiotic bacteria as chassis organisms and the development of self-limiting regulatory systems (e.g.,
blood-meal-inducible expression of effectors) [75] offer promising avenues to enhance biosafety and facilitate regulatory
approval.

Despite their differences, both paratransgenic and natural bacteria-based approaches share key priorities: enhancing
bacterial colonization and competitiveness in wild mosquito populations, developing standardized delivery and applica-
tion methods, and navigating regulatory frameworks. Importantly, systematic exploration of field-collected mosquitoes
for novel bacterial strains and bioactive molecules can inform the development of paratransgenic tools, while innova-
tions in genetic engineering and containment strategies can also improve the safety and monitoring protocols that may
also benefit native-strain approaches. Ultimately, it is important to emphasize that neither paratransgenesis nor natural
bacteria approach alone is likely to achieve sustained reductions in MBD transmission. Instead, gut bacteria-based
approaches must be integrated with existing and emerging vector control tools to maximize effect. For example, the
combination of gut bacteria-based approach with chemical insecticides can enhance MBD transmission blocking in the
remnant mosquito population. Similarly, combining gut bacteria-based approach with genetically modified mosquitoes
could generate a synergistic effect, further reducing vector competence and accelerating progress toward disease
elimination.
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4. A Promising yet thorny road ahead

There are more than 3,000 mosquito species worldwide, yet only a small subset of mosquito species (most notably within
the Anopheles, Aedes, and Culex genera) serves as major disease vectors. Conventional efforts to suppress or eliminate
mosquito populations often prove unsustainable, raise substantial ecological concerns, and demonstrate diminishing
effectiveness over time. A more sustainable long-term approach embraces the principles of the One Health framework,
which emphasizes the interconnectedness of human health, animal welfare, and environmental integrity. Rather than
killing mosquitoes, an alternative strategy seeks to modify vector populations to render them resistant to pathogen infec-
tion and, therefore, incapable of transmitting the pathogen to humans. This strategy includes transgenesis, in which
mosquitoes are genetically engineered to become refractory to infection, as well as paratransgenesis or a symbiont-based
approach, which involves introducing anti-pathogen gut symbiotic bacteria into mosquito populations to inhibit pathogen
development and transmission. Such a “refractory” approach highlights the potential of vector-targeted interventions that
interfere with pathogen development within the insect host, thereby blocking disease transmission without the need to
eliminate mosquito populations (Table 2).

4.1. Symbiotic approaches in addressing emerging challenges

Symbiont-based control approaches have several advantages compared with other strategies. Certain mosquito-
associated bacterial species—such as Serratia spp., Asaia spp., and other bacteria species—are well-adapted to
colonize the mosquito midgut. These bacteria can proliferate after blood meals, when the mosquito acquires patho-
gens, and colonize multiple mosquito species. These properties support the potential for persistent pathogen-blocking
effects in various mosquito populations. When deployed via sugar baits or other delivery methods, symbiont-based
approaches can be particularly effective in targeting outdoor-biting mosquitoes, a major limitation of bed nets and
indoor spraying. Importantly, paratransgenic approaches—engineered symbionts expressing anti-pathogen effec-
tors—can be rapidly iterated and tailored to respond to emerging threats such as concurrent outbreaks of malaria and
arboviruses. Moreover, symbiotic approaches are also inherently low-tech, low-cost, and require less human behavioral
compliance, thus, they can be easily scaled up and widely implemented in underdeveloped countries. This is especially
valuable in situations of reduced official commitment or funding and can easily be restored in cases of interruptions due
to pandemics or extreme climate events.

Moreover, symbiont-based approaches are highly compatible with both established and novel vector control measures.
They can be integrated with insecticide-impregnated bed nets, entomopathogenic fungi [88], and gene drive platforms to
construct multifaceted intervention packages. Such combinations can create synergistic effects—lowering the threshold
for epidemiological impact, mitigating resistance evolution, and accelerating progress toward sustained disease control
and eventual elimination.

Table 2. Key characteristics of “kill” and “refractory” strategies in mosquito-borne disease control.

Strategy type Kill strategy Refractory strategy
Primary objective Reduce mosquito population Replace mosquito populations with individuals refractory to
pathogen infection

Implementation approaches Chemical insecticides, bioinsecticides, and sterile | Symbiont-based control, genetic modification
insect technique

Ecological impact Effects on non-target organisms, environmental Relatively limited ecological disruption
contamination

Long-term efficacy Requires continuous application, high operational Limited implementation with sustained efficacy (e.g., symbiont-
costs based, paratransgenesis, or transgenesis strategies)

https://doi.org/10.1371/journal.ppat.1013431.t002
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4.2. Mechanistic gaps in gut microbiota—pathogen—mosquito interactions

A deeper understanding of the mechanisms underlying symbiotic control approaches is crucial not only for enhancing their
efficacy but also for gaining public and regulatory acceptance. Although promising, current research remains at an early
stage. To optimize implementation, it is important to consider microbial ecological dynamics, including potential interac-
tions between introduced bacteria and local microbiota. Given the genomic variability observed among bacterial strains—
even within the same species—strain-level characterization is recommended to ensure consistency, functionality, and
safety. This includes assessing traits, such as colonization capacity, genetic stability, and resistance profiles, which can
influence performance and field outcomes.

The mosquito midgut, as the initial site of mosquito-borne pathogen development, serves as a complex interface,
where host blood factors, mosquito-derived factors, and microbiota interact. These multipartite interactions collectively
shape the mosquito’s vector competence, yet many of their underlying mechanisms remain unresolved. Recent studies
have begun to reveal the intricacy of these interactions. For instance, host serum iron levels have been shown to modu-
late dengue virus acquisition by mosquitoes [89]. Additionally, tryptophan catabolism by gut bacteria influences gut barrier
integrity and impacts Plasmodium infection susceptibility [90]. Furthermore, exposure to host blood serum induces sym-
biotic Serratia bacteria to produce outer membrane vesicles, which deliver effector proteins, such as lipases, that actively
lyse Plasmodium parasites [83]. These findings underscore the importance of deciphering the complex interactions
occurring within the mosquito gut, not only to clarify how symbiotic bacteria influence pathogen transmission but also to
inform the development of next-generation MBD control strategies. A precise mechanistic understanding will be essential
for optimizing and refining symbiotic control approaches, ensuring their long-term effectiveness and safe deployment in
real-world applications.

4.3. Challenges limiting the implementation of symbiotic control approaches

Over the past two decades, symbiotic control strategies have demonstrated promising efficacy in laboratory setting and,
more recently, in semi-field trials, supporting their potential in advancing MBD control. Despite these promising devel-
opments, the field now stands at a crucial crossroad. Key challenges include scaling up beyond pilot studies, fostering
support among the public, policymakers, and regulatory bodies, defining professional and industrial standards, and trans-
lating research findings into commercially ready products. Although obstacles such as technical complexities, biosafety
concerns, regulatory requirements, and funding limitations remain, the substantial benefits of these approaches justify
continued commitment and investment.

Transitioning from research promise to practical implementation requires overcoming several interconnected barriers.
Technically, scaling up production and formulation of viable symbionts necessitates robust quality-control systems, opti-
mized delivery platforms, and validated assays to reliably measure pathogen-blocking efficacy under diverse field condi-
tions. Safety and ecological assessments—including evaluations of horizontal gene transfer, non-target organism impacts,
and evolutionary stability—must conform to rigorous international guidelines. Furthermore, transparent engagement with
local communities, clear communication of risks and benefits, and equitable financial support mechanisms are essential to
securing public acceptance and regulatory approval. With coordinated progress across these domains, symbiotic control
approaches are well-positioned to move beyond the experimental stage and emerge as transformative, scalable tools in
the global fight against MBDs.

5. Concluding remarks
5.1. Bridging the gap: From laboratory to semi-field and field trials

Recent advances in symbiotic control strategies have underscored the critical importance of semi-field testing as an
essential step toward real-world application. These trials serve as a vital bridge between laboratory studies and full-scale
field deployment, helping to evaluate the effectiveness, identify potential impacting factors, and refine methodologies
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before large-scale implementation. While paratransgenesis still faces regulatory resistance in transitioning to semi-field
and field studies, natural symbiotic gut bacteria-based approaches have already seen significant progress in this area.
Several symbiotic bacteria with pathogen-blocking properties, such as Su_YN1 and TC1 (both anti-Plasmodium) and
YN_46 (anti-arbovirus) [41,44,45], demonstrate strong feasibility for larger-scale semi-field studies and even early-stage
field trials. However, such real-world testing requires conducting experiments in authentic disease-endemic settings, often
entailing extensive international collaboration, complex regulatory approvals, long experimental timelines, and substan-
tial financial and logistical investment. Additionally, these trials are subject to seasonal and climatic variations, as well as
potential political instability in test regions, further complicating their execution. Given these challenges, the successful
advancement of semi-field and field trials will require strong governmental cooperation and the support of international
organizations such as the World Health Organization (WHO).

5.2. Field deployment strategies

Efficient deployment of pathogen-blocking bacteria into wild mosquito populations is critical to the successful implementa-
tion of symbiotic control strategies. Among various options, sugar-bait stations containing symbiotic bacteria represent the
most practical and scalable delivery method. These stations capitalize on the natural sugar-feeding behavior of both male
and female mosquitoes, require no mass-rearing infrastructure, and can be flexibly distributed throughout villages, peri-
domestic vegetation, or livestock shelters. Once established, community health workers can easily service these stations
at relatively low operational costs. Initial field trials have demonstrated that high symbiont prevalence can be maintained,
even within highly mobile vector populations.

Importantly, sugar-bait stations alleviate public concerns associated with large-scale mosquito releases and signifi-
cantly reduce labor demands, making this approach particularly suitable for deployment in resource-limited regions such
as sub-Saharan Africa. By comparison, direct inoculation of larval habitats, although conceptually appealing, faces sub-
stantial operational difficulties due to the abundance, transient nature, and seasonal variability of breeding sites, especially
after rain events. Similarly, releasing laboratory-reared, symbiont-infected adult mosquitoes remains the most resource-
intensive and operationally complex strategy, requiring extensive insectary capacity, sex separation, stringent quality
controls, specialized transportation, and rigorous regulatory oversight.

Sugar-bait stations are already widely utilized for field-based mosquito assessments across Africa [91], demonstrat-
ing their immediate practicality and community acceptance as bacterial delivery systems. Nevertheless, technological
refinements remain necessary. A recent field trial of attractive targeted sugar baits for malaria control in western Kenya
showed no reduction in mosquito density or malaria endpoints [92], perhaps owing to insufficient lure power of the baits
and low effective coverage of the device. Clay pot combined with compound fruit juice baits [93], offers a technology
that is close to the feeding and resting behavior of mosquitoes, and provides a feasible way in disseminating symbiotic
bacteria. For optimal efficacy, bait attractants must be tailored to local mosquito feeding preferences, and bacterial for-
mulations must ensure prolonged viability under field conditions, including exposure to heat and UV radiation. In addition,
contamination-prevention measures are needed to protect bait formulations from environmental microbes.

5.3. Remaining challenges and the road ahead

Despite significant advancements in symbiont-based transmission-blocking strategies, numerous scientific, technical, and
regulatory challenges remain before these approaches can be widely implemented (Fig 5). Key hurdles include improv-

ing the ability of bacteria colonization of mosquitoes, improving competitiveness of engineered or natural bacteria in wild
mosquito populations, optimizing large-scale deployment methods, and ensuring the long-term stability of these interven-
tions in diverse environmental conditions. Furthermore, regulatory approval and public acceptance are essential and pose
major challenges, particularly for paratransgenesis, as concerns over biosafety, ecological impact, and off-target effects
must be rigorously addressed. Even natural bacterial approaches require comprehensive validation to confirm their efficacy

PLOS Pathogens | https://doi.org/10.1371/journal.ppat. 1013431 August 22, 2025 11/16




PLO%- Pathogens

Issues to be addressed Solutions and coping strategies
 Funding shortage ‘

o Regulatory approval

o MBD surveillance International and

governmental cooperation

« Bacterial blocking ﬁ# i) »
effectiveness .\B.;
» Mosquito introduction ]

o Effectiveness in real world S ‘
o Cost-benefit analysis
* Product development

Open-field pilot trials

Fig 5. Symbiotic control strategies—opportunities and challenges. Key issues need to be addressed in translating symbiotic control strategies in the
field.

https://doi.org/10.1371/journal.ppat.1013431.9005

and safety in real-world applications. At the same time, the evolving epidemiology of MBDs—driven by climate change,
insecticide resistance, urbanization, and global human mobility—demands constant innovation. Importantly, the interplay
between “kill” and “refractory” strategies must be considered. Integrating symbiotic control with existing tools such as
insecticide-based approaches, genetic vector control, and public health interventions is a must to create holistic solutions.

Achieving sustainable MBD control will require long-term investment, interdisciplinary collaboration, and international
cooperation. While the path ahead is filled with challenges, the introduction of symbiotic control technologies—guided
by fundamental research and field-based evidence—holds potential to transform the future of vector-borne disease
suppression.
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