Selected publications (*, corresponding author)

     

    1. Zhao PF, Hong S, Li Y, Chen HM, Gao HC, Wang CS*. 2024. From phyllosphere to insect cuticles: silkworms gather antifungal bacteria from mulberry leaves to battle fungal parasite attacks. Microbiome, 12: 40. [link][Video abstract]

    2. Lu MT, Wei DX, Shang JM, Li SQ, Song SX, Luo YJ, Tang GR, Wang CS*. 2024. Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Reports, 43(1):113642. [link]

    3. Hong S, Shang JM, Sun YL, Tang GR, Wang CS*. 2024. Fungal infection of insects: Molecular insights and prospects. Trends in Microbiology, 32(3): 302-316. [link]

    4. Shang JM, Song SX, Wang CS*. 2024. Metarhizium robertsii. Trends in Parasitology, 40(2): 192-193. [link]

    5. Hong S, Gao HC, Chen HM, Wang CS*. 2024. Engineered fungus containing a caterpillar gene kills insects rapidly by disrupting their ecto- and endo-microbiomes. Communications Biology 7, 955. [link]

    6. Shang JM, Hong S, Wang CS*. 2024. Fights on the surface prior to fungal invasion of insects. PLoS Pathogens, 20(2): e1011994. [link]

    7. Wang XW, Hong S, Tang GR, Wang CS*. 2024. Accumulation of the spontaneous and random mutations is causative of fungal culture degeneration. Fundamental Research, DOI: 10.1016/j.fmre.2024.02.003. [link]

    8. Li X-L, Sun Y, Yin Y, Zhan S, Wang CS*. 2023. A bacterial-like Pictet–Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes. Proceedings of the National Academy of Sciences USA, 120(30): e2303327120. [link]

    9. Shang JM, Tang GR, Yang J, Lu MT, Wang C-Z, and Wang CS*. 2023. Sensing of a spore surface protein by a Drosophila chemosensory protein induces behavioral defense against fungal parasitic infections. Current Biology, 33(2), 276-286. [link] [Current Biology comments] [Science Signaling highlight][F1000 highlight]

    10. Hong S, Sun YL, Chen HM, Wang CS*. 2023. Suppression of the insect cuticular microbiomes by a fungal defensin to facilitate parasite infection. ISME J, 17(1): 1-11. [link] [Nature Index highlight]

    11. Luo FF#, Tang GR#, Hong S, Gong T, Xin X-F, Wang CS*. 2023. Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Science China Life Sciences, 66(5): 1119–1133. [link][EurekAlert highlight]

    12. Hong S, Sun Y, Chen H, Zhao P, Wang CS*. (2023) Fungus–insect interactions beyond bilateral regimes: the importance and strategy to outcompete host ectomicrobiomes by fungal parasites. Current Opinion in Microbiology, 74: 102336. [link]

    13. Sun YL#, Chen B#, Li XL, Yin Y, Wang CS*. 2022. Orchestrated biosynthesis of the secondary metabolite cocktails enables the producing fungus to combat diverse bacteria. mBio,13(5): e0180022. [link]

    14. Sun YL, Hong S, Chen HM, Yin Y, Wang CS*. 2022. Production of helvolic acid in Metarhizium contributes to fungal infection of insects by bacteriostatic inhibition of the host cuticular microbiomes. Microbiology Spectrum, 10(5): e0262022. [link]
    15. Hong S, Sun Y, Sun D, Wang CS*. 2022. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience, 25: 104408. [link]

    16. Li B, Song SX, Wei XF, Tang GR, Wang CS*. 2022. Activation of microlipophagy during early infection of insect hosts by Metarhizium robertsii. Autophagy, 18:608-623. [link]

    17. Shang JM, Tang GR., Lu MT, Wang, CS*. 2022. Host and environmental sensing by entomopathogenic fungi to infect hosts. Current Clinical Microbiology Reports, 9: 69–74. [link]

    18. Chen B#, Sun YL#, Li, SQ, Yin Y, Wang, CS*. 2021. Inductive production of the iron-chelating 2-pyridones benefits the producing fungus to compete for diverse niches. mBio, 12(6): e03279-21 [Link]

    19. Mei LJ#, Wang XW#, Yin Y, Tang GR, Wang CS*. 2021. Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathogens, 17(6): e1009656. [link][Cover]

    20. Shang JM#, Shang YF#, Tang GR, Wang CS*. 2021. Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. Science China Life Science, 64 (3): 466-477. [link]

    21. Li S#, Yi W#, Chen S, Wang CS*. 2021. Empirical support for the pattern of competitive exclusion between insect parasitic fungi. Journal of Fungi, 7(5): 385. [link]

    22. Mei LJ#, Chen MJ#, Shang YF, Tang GR, Tao Y, Zeng L, Huang B, Li ZZ, Zhan S*, Wang CS*. 2020. Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years. ISME J, 14(6): 1422-1434. [link]

    23. Luo FF, Hong S, Chen B, Yin Y, Tang GR, Hu FL, Zhang HZ, Wang CS*. 2020. Unveiling of swainsonine biosynthesis via a multi-branched pathway in fungi. ACS Chemical Biology, 15(9): 2476-2484. [link][Hot off the Press]

    24. Huang AT, Lu MT, Ling E, Li P*, Wang CS*. 2020. A M35 family metalloprotease is required for fungal virulence against insects by inactivating host prophenoloxidases and beyond. Virulence, 11:222-237. [link]

    25. Tang GR, Shang YF, Li SQ, Wang CS*. 2020. MrHex1 is required for Woronin body formation, fungal development and virulence in Metarhizium robertsii. Journal of Fungi, 6(3): 172. [link]

    26. Yin Y, Chen B, Song SX, Li B, Yang XQ, Wang CS*. 2020. Production of diverse beauveriolide analogs in closely related fungi: a rare case of fungal chemodiversity. mSphere, 5: e00667-20. [link]

    27. Xiao GH, Tang GR, Wang CS*. 2020. Congruence amidst discordance between sequence and protein-content based phylogenies of fungi. Journal of Fungi, 6(3): 134. [link]

    28. Chen B, Sun YL, Luo FF, Wang CS*. 2020. Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: A review of safety. Toxins, 12: 410. [link]

    29. Huang W, Hong S, Tang GR, Lu YZ, Wang CS*. 2019. Unveiling the function and regulation control of the DUF3129 family proteins in fungal infection of hosts. Philosophical Transactions of The Royal Society B: Biological Sciences, 374(1767): 20180321. [link]

    30. Yang XQ, Feng P, Yin Y, Bushley K, Spatafora JW, Wang CS*. 2018. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio, 9(5):e01211-18. [link]

    31. Chen YX, Li B, Cen K, Lu YZ, Zhang SW, Wang CS*. 2018. Diverse effect of phosphatidylcholine biosynthetic genes on phospholipid homeostasis, cell autophagy and fungal developments in Metarhizium robertsii. Environmental Microbiology, 20(1): 293-304. [link]

    32. Chen YX, Cen K, Lu YZ, Zhang SW, Shang YF, Wang CS* 2018. Nitrogen-starvation triggers cellular accumulation of triacylglycerol in Metarhizium robertsii. Fungal Biology, 122: 410-419. [link]

    33. Xia YL#, Luo FF#, Shang YF, Chen PL, Lu YZ, Wang CS*. 2017. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chemical Biology, 24: 1479-1489. [link] [Commented by ATM]

    34. Wang CS*, Wang SB. 2017. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 62: 73-90. [link]

    35. Cen K, Li B, Lu YZ, Zhang SW, Wang CS*. 2017. Divergent LysM effectors contribute to the virulence of Beauveria bassiana by evasion of insect immune defenses. PLoS Pathogens, 13(9): e1006004. [link]

    36. Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang C-Y, Dobens L, Zou Z, Wang CS*, Ling EJ*. 2017. Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis. Frontiers in Immunology, 8: 1445. [link]

    37. Lu YZ#, Luo FF#, Cen K, Xiao GH, Yin Y, Li CR, Li ZZ, Zhan S, Zhang HZ*, Wang CS*. 2017. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae. BMC Genomics, 18: 668. [link]

    38. Gao Q, Lu YZ, Yao HY, Xu YJ, Huang W, Wang CS*. 2016. Phospholipid homeostasis maintains cell polarity, development and virulence in Metarhizium robertsii. Environmental Microbiology, 18(11): 3976–3990. [link]

    39. Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS*. 2016. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 8(5): 1374-1387 [link]

    40. Xu Y-J, Luo FF, Li B, Shang YF, Wang CS* 2016. Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Frontiers in Microbiology, 7: 2020. [link]

    41. Wang JB, St. Leger RJ*, Wang CS*. 2016. Advances in genomics of entomopathogenic fungi. Advances in Genetics, 94: 67-105. [link]

    42. Lu YZ, Xia YL, Luo FF, Dong CH, Wang CS* 2016. Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris. Fungal Genetics and Biology, 88: 35-43. [link]

    43. Feng P, Shang YF, Cen K, Wang CS*. 2015. Fungal biosynthesis of the bibenzoquinoe oosporein to evade insect immunity. Proceedings of the National Academy of Sciences USA, 112(36): 11365-11370. [link]

    44. Shang YF, Feng P, Wang CS*. 2015. Fungi that infect insects: altering host behavior and beyond. PLoS Pathogens, 11(8): e1005037. (Invited review) [link]

    45. Huang W, Shang YF, Chen PL, Cen K, Wang CS*. 2015. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. Journal of Biological Chemistry, 290(13): 8218-8231. [link]

    46. Huang W., Shang Y.F., Chen P.L., Gao Q., Wang C.S.* 2015, MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii. Environmental Microbiology, 17(4): 994-1008. [link]

    47. Chen YX, Duan ZB, Chen PL, Shang YF, Wang CS*. 2015. The Bax inhibitor MrBI-1 regulates heat tolerance, apoptotic-like cell death, and virulence in Metarhizium robertsii. Scientific Reports, 5: 10625. [link]

    48. Shang YF, Chen PL, Chen YX, Lu YZ, Wang CS*. 2015. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. Eukaryotic Cell, 14(4): 396-405. [link]

    49. Chen YX, Feng P, Shang YF, Xu Y-J, Wang CS*. 2015. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genetics and Biology, 81: 142-149. [link]

    50. Wang CS*, Lu L*, Yin WB*, Zhang KQ*. 2015. From taxonomy and industry to genetics: Fungal Biology in China. Fungal Genetics and Biology, 81: 110-112. [link]

    51. Xu YJ, Luo FF, Gao Q, Shang YF, Wang CS*. 2015. Metabolomics reveals insect metabolic responses associated with fungal infection. Analytical and Bioanalytical Chemistry, 407(16): 4815-4821. [link]

    52. Liu LS, Zhang J, Chen C, Teng JT, Wang CS*, Luo DQ*. 2015. Structure and Biosynthesis of fumosorinone, a new protein phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genetics and Biology, 81: 191-200. [link]

    53. Wang CS.* 2015. A vision for the innovative study of fungal biology in China: Presidential address. Mycology, 6(1): 1-3. [link]

    54. Hu X, Xiao GH, Zheng P, Shang YF, Su Y, Zhang XY, Liu XZ, Zhan S, St. Leger RJ, Wang CS.*. 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences USA, 111(47): 16796-16801. [link] (Highlighted by F1000).

    55. Li L, Hu X, Xia YL, Xiao GH, Zheng P, Wang CS.* 2014. Linkage of oxidative stress and mitochondrial dysfunctions to spontaneous culture degeneration in Aspergillus nidulans. Molecular & Cellular Proteomics, 13(2):  449-461. [link]

    56. Wang CS*, Feng M-G.* 2014. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biological Control, 68(1): 129-135. (Invited Review) [link]

    57. Xu YJ*, Wang CS, Ho WE, Ong CN. 2014. Recent developments and applications of metabolomics in microbiological investigations. Trends in Analytical Chemistry, 56: 37-48. [link]

    58. Duan ZB, Chen YX, Huang W, Shang YF, Chen PL, Wang CS.* 2013. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy, 9(4): 538-549.[link

    59. Gao Q, Shang YF, Wei H, Wang CS.* 2013. Glycerol-3-phosphate acyltransferase contributes to triacylglycerol biosynthesis, lipid droplet formation and host invasion in Metarhizium robertsii. Applied and Environmental Microbiology, 79(24): 7646-7653. [link]

    60. Hu X, Zhang YJ, Xiao GH, Zheng P, Xia YL, Zhang XY, St. Leger RJ, Liu XZ, Wang CS.* 2013. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Science Bulletin, 58(23): 2846-2854. (cover story) [link]

    61. Zheng P, Xia YL, Zhang SW, Wang CS.* 2013. Genetics of Cordyceps and related fungi. Applied Microbiology and Biotechnology, 97(7): 2797-2804. (Invited review) [link]

    62. Xiong CH, Xia YL, Zheng P, Wang CS.* 2013. Increasing oxidative stress tolerance and subculturing stabilities of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Applied Microbiology and Biotechnology, 97(5): 2009-2015. [link]

    63. Wei W, Chen L, Zou G, Wang QF, Yan X, Zhang J, Wang CS,* Zhou ZH.* 2013. N-glycosylation affects the proper folding, enzymatic characteristics and production of a fungal β-glucosidase. Biotechnology and Bioengineering, 110(12): 3075-3084. [link]

    64. Wang B, Kang QJ, Lu YZ, Bai LQ, Wang CS.* 2012. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proceedings of the National Academy of Sciences USA, 109(4): 1287-1292. [link]

    65. Xiao GH, Ying S-H, Zheng P, Zhang SW, Xie X-Q, Shang YF, St. Leger RJ, Zhao G-P, Wang CS.*, Feng M-G.* 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports 2: 483. [link]

    66. Shang YF, Duan ZB, Huang W, Gao Q, Wang CS.* 2012.  Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. Journal of Invertebrate Pathology, 109(1): 105-109. [link]

    67. Yang EC, Xu LL, Yang Y, Zhang XY, Xiang MC, Wang CS., An Z.Q.*, Liu X.Z.* 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proceedings of the National Academy of Sciences USA, 109(27): 10960-10965. [link]

    68. Zheng P, Xia YL, Xiao GH, Xiong CH, Zhang SW, Zheng HJ, Huang Y, Zhou Y, Wang SY, Zhao G-P, Liu XZ, St. Leger RJ, Wang CS.* 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology, 12(11): R116. [link]

    69. Gao Q, Jin K, Ying SH, Zhang YJ, Xiao GH, Shang YF, Duan ZB, Hu X, Xie XQ, Zhou G, Peng GX,  Luo ZB, Huang W, Wang B, Fang WG, Wang SB, Zhong Y, Ma L-J, St. Leger RJ, Zhao GP, Pei Y, Feng M-G*, Xia Y*, Wang CS*. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7(1): e1001264. [link] [Highlighted by F1000][Highlighted by NBT]

    70. Wang SB, Fang WG, Wang CS, St. Leger RJ.* 2011. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathogens  7(6): e1002097. [link]

    71. Xiong CH, Xia YL, Zheng P, Shi SH, Wang CS.* 2010. Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology, 1(1): 25-66.[link

    72. St. Leger RJ*, Wang CS.* 2010. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Applied Microbiology and Biotechnology, 85, 901–907. (Invited Review).[link]

    73. Duan ZB, Shang YF, Gao Q, Zheng P, Wang CS.* 2009. A phosphoketolase Mpk1 of bacterial origin is adaptively required for full virulence in the insect-pathogenic fungus Metarhizium anisopliae. Environmental Microbiology, 11(9): 2351-2360.[link]

    74. Lv DD, Pava-Ripoll M, Li ZZ, Wang CS*. 2008. Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Applied Microbiology and Biotechnology 81(3): 515-522.[link]

    75. Li L, Pischetsrieder M, St. Leger RJ, Wang CS*. 2008. Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fungal Genetics and Biology, 45(9): 1300-1306. [link]

    76. Wang CS*, Duan ZB, St. Leger RJ.* 2008. The MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryotic Cell 7(2): 302-309.[link]

    77. Wang CS*, St. Leger RJ. * 2007. A scorpion neurotoxin increases the potency of a fungal insecticide. Nature Biotechnology 25(12):1455-1456.[link][Commented by NBT]

    78. Wang CS*, St. Leger RJ.* 2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure and virulence. The Journal of Biological Chemistry 282(29): 21110-21115.[link] [Highlighted by F1000]

    79. Wang CS, St. Leger RJ* 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell 6(5): 808-816.[link]

    80. Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang CS, Butt TM, Belvin M, Hoffmann JA, Ferrandon D. 2006. Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors. Cell 127(7):1425-1437.[link]

    81. Wang CS, St. Leger RJ.* 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences USA 103(17): 6647-6652.[link]

    82. Wang CS*, Typas MA, Butt TM. 2005. Phylogenetic and exon-intron structure analysis of fungal subtilisins: support for a mixed model of intron evolution. Journal of Molecular Evolution 60(2): 238-246. [link]

    83. Wang CS, Hu G, St. Leger RJ.* 2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genetics and Biology 42(8):704-718.[link]

    84. Wang CS, St. Leger RJ.* 2005. Developmental and transcriptional responses to host and non host cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryotic cell 4(5): 937-947.[link]

    85. Wang CS, Butt TM, St. Leger RJ. 2005. Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology (UK) 151(10): 3223-3236.[link]

    86. Wang CS*, Fan MZ, Li ZZ, Butt TM. 2004. Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. Journal of Applied Microbiology 96(4): 861-870.[link]

    87. Wang CS*, Skrobek A, Butt TM. 2004. Investigation on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 85(3): 168-174.[link]

    88. Wang CS*, Shah FA, Petal N, Li ZZ, Butt TM. 2003. Molecular investigation on genetic relatedness and population structure of the entomopathogenic fungus, Beauveria bassiana. Environmental Microbiology 5(10):  908-915.[link]

    89. Wang CS, Li ZZ, Typas MA, Butt TM.* 2003. Nuclear large subunit rDNA group I intron distribution in a population of Beauveria bassiana strains: phylogenetic implications. Mycological Research 107(10): 1189-1200. [link]

    90. Wang CS*, Skrobek A, Butt TM. 2003. Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiology Letters 226(2), 373-378.[link]

    91. Wang CS*, Typas MA, Butt TM. 2002. Detection and characterisation of pr1 gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiology Letters 213(2): 251-255.[link]

    92. Wang CS*, Li ZZ, Butt TM. 2002. Molecular studies of co-formulated strains of the entomopathogenic fungus, Beauveria bassiana. Journal of Invertebrate Pathology, 80(1): 29-34.[link]

    Book chapter

    1. Hong S, Shang J, Sun Y, Wang CS. 2024. Genetics and infection biology of the entomopathogenic fungi. In: Fungal Associations, The Mycota 9. Edited by Hsueh Y-P, Blackwell M. Cham: Springer. pp. 309-331. [link]

    2. Wang CS, St. Leger RJ. 2014. Genomics of entomopathogenic fungi. In: The Ecological Genomics of Fungi. Edited by Francis Martin. Oxford: Wiley Blackwell. pp. 243-260. [link]

    3. St. Leger RJ, Wang CS. 2009. Entomopathogenic fungi and the genomics era. In: Insect Pathogens: Molecular Approaches and Techniques. Edited by Stock, S. P., Vandenberg, J., Glazer, I. and Boemare, N. Oxfordshire: CABI Publishing, pp, 365-400. [link]

    4. Butt TM, Wang CS, Shah FA, Hall R. 2006. Degeneration of entomogenous fungi. In: An Ecological and Societal Approach to Biological Control, edited by Jorgen Eilenberg and Heikki Hokkanen. Springer, the Netherlands. pp. 213-226.[link]