
JIPB Journal of  Integrative
Plant Biology

Invited Expert Review
https://doi.org/10.1111/jipb.13456

Understanding the regulation of cereal grain filling:
The way forwardFA

Bin Ma1 , Lin Zhang2,3* and Zuhua He1*
1. National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
2. Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education, Yangzhou University,
Yangzhou 225009, China
3. Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009,
China
*Correspondences: Lin Zhang (zhangl@yzu.edu.cn); Zuhua He (zhhe@cemps.ac.cn; Dr. He is fully responsible for the distributions of all
materials associated with this article)

Bin Ma Zuhua He

ABSTRACT
During grain filling, starch and other nutrients
accumulate in the endosperm; this directly de-
termines grain yield and grain quality in crops
such as rice (Oryza sativa), maize (Zea mays), and
wheat (Triticum aestivum). Grain filling is a com-
plex trait affected by both intrinsic and environ-
mental factors, making it difficult to explore the

underlying genetics, molecular regulation, and the
application of these genes for breeding. With the
development of powerful genetic and molecular
techniques, much has been learned about the
genes and molecular networks related to grain
filling over the past decades. In this review,
we highlight the key factors affecting grain filling,
including both biological and abiotic factors.
We then summarize the key genes controlling
grain filling and their roles in this event, including
regulators of sugar translocation and starch bio-
synthesis, phytohormone‐related regulators, and
other factors. Finally, we discuss how the current
knowledge of valuable grain filling genes could be
integrated with strategies for breeding cereal
varieties with improved grain yield and quality.
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INTRODUCTION

Rice (Oryza sativa L.), wheat (Triticum aestivum L.), and
maize (Zea mays L.) are major cereal crops which greatly

contribute to human nutrition worldwide. The Food and
Agriculture Organization (FAO) estimated global cereal pro-
duction to be 2,791 million tons in 2021 (OECD‐FAO, 2021).
Rice and wheat production have greatly improved over the
past decades due to the widespread application of “Green
Revolution” genes. However, a yield ceiling has emerged,
especially for rice. In China, the “super hybrid rice” and
“super rice” programs were initiated to increase rice yields
via the combined use of ideotype and heterosis breeding
strategies, leading to the development of numerous rice

varieties with large panicles (Cheng et al., 2007; Peng et al.,
2008). However, some of these rice varieties do not produce
high yields due to incomplete grain filling (Yang and Zhang,
2010; Sekhar et al., 2015). Therefore, grain filling capacity is a
key determinant of crop yield.

Cereal seeds primarily comprise endosperm, which
contains large numbers of starch granules. In grain filling,
the plant translocates assimilates (carbohydrates produced
by photosynthesis) to the endosperm, where a series of
enzymes converts sucrose to starch (Krishnan and
Dayanandan, 2003). Carbohydrates are translocated from
source organs (leaves) to sink organs (seeds) where they
are stored in the form of starch (Oparka and Gates, 1981;
Patrick, 1997). Therefore, grain filling is closely related to
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sugar translocation, metabolism, and starch biosynthesis.
Disrupting genes related to these pathways leads to severe
defects in grain filling, such as Grain Incomplete Filling 1
(GIF1) in rice, Miniature1 (Mn1) in maize, ZmSweet4c and
OsSweet4 (Wang et al., 2008a; Kang et al., 2009; Sosso
et al., 2015).

Phytohormone levels in seeds also play vital roles in con-
trolling grain filling (Yang et al., 2001; Xu et al., 2007; Zhou
et al., 2013; Doll et al., 2017). Auxin regulates seed develop-
ment; the indole‐3‐acetic acid (IAA) content rapidly increases
in rice grains after pollination (Yang et al., 2001; Zhang et al.,
2009; Uchiumi and Okamoto, 2010). Cytokinin and brassi-
nosteroid (BR) levels regulate the division (and thus number) of
endosperm cells in cereals (Yang et al., 2002; Wu et al., 2008).
Abscisic acid (ABA) and gibberellin are also involved in grain
filling in rice (Schmidt et al., 2014; Qin et al., 2021).

Transcription factor (TF) genes are specifically expressed
in seeds, and endosperm development and grain filling re-
quire key TFs, such as OPAQUE2 (O2), the No Apical Mer-
istem (NAC) domain TFs OsNAC127 and OsNAC129, Nuclear
Factor YB1 (NF‐YB1) and NF‐YC1, or the B3 domain TF ABA‐
INSENSITIVE 19 (ZmABI19), to name a few (Li et al., 2015;
Bai et al., 2016; Ren et al., 2021; Yang et al., 2021). These
TFs likely function as key regulators of grain filling by con-
necting sugar translocation and metabolism, starch biosyn-
thesis, phytohormonal regulation, and other biological and
physiological events.

Poor grain filling reduces grain yield and quality. Under-
standing the factors that restrict grain filling and dissecting
the underlying genes will lay the foundation for improving
grain yield and quality by altering cultivation practices or by
breeding. In this review, we describe grain filling and the
factors that directly and indirectly affect this process. We
discuss representative genes involved in different aspects
of grain filling and present a molecular network linking key
aspects of grain filling. Finally, we propose strategies for
improving grain filling in cereals during cultivation and
breeding.

WHAT IS GRAIN FILLING?

In cereal seeds, the endosperm accumulates starch and
other nutrients. Most nutrients in seeds are stored in the
endosperm (Olsen et al., 1999; Consonni et al., 2005). En-
dosperm development in cereals is generally described as
grain filling, representing the final stage of cereal develop-
ment during which fertilized ovaries develop into caryopses.
Grain filling in cereals such as rice (Figure 1A) is characterized
by dynamic changes in grain weight along with seed devel-
opment. The quality of grain filling directly establishes the
final yield and quality of grains. Grain filling is also associated
with seed size and seed setting rate; some mutants with
defects in grain filling exhibit smaller grains and a lower seed
setting rate than the wild type (Nallamilli et al., 2013; Gui
et al., 2014).

During grain filling, the starchy endosperm in the central
area of the caryopsis primarily accumulates starch, along
with a small portion of storage proteins (Wu et al., 2016a).
The carbon for starch biosynthesis in cereal grains origi-
nates from photosynthesis in leaves, which produce as-
similates that can be transferred directly to grains or real-
located to reserve pools in vegetative tissues (Schnyder,
1993). Once these assimilates (mainly sucrose) are trans-
ported to the caryopsis via specific transporters, sucrose
can be converted into monosaccharides by hydrolysis and
used for starch biosynthesis (Wang et al., 2008a). These
processes reflect the relationships and interactions of well‐
defined source‐flow‐sink activities, which largely determine
grain filling. In detail, the source represents tissues such as
mature leaves and sheaths, which produce assimilates. The
sink represents tissues such as grains/kernels, which ac-
cept and utilize assimilates. Flow occurs through phloem
tissues, which translocate assimilates from source to sink
tissue (Li et al., 2018b). Grain filling and production are en-
hanced in plants via coordinated source‐sink‐flow activities.
For example, high rates of leaf photosynthesis and nutrient
remobilization are indispensable for increased panicle and
seed size (Yu et al., 2015; Chang et al., 2017). Moreover, the
sucrose from leaves must be efficiently unloaded into the
endosperm, which is also important for grain filling and crop
yields (Ruan, 2014).

The filling caryopsis contains different types of tissues
derived from maternal or filial components (Figure 1B). The
endosperm is a triploid filial tissue consisting of an inner
starchy endosperm and an outer aleurone layer. The embryo
occupies a small portion of the caryopsis and comprises
diploid filial tissue. Around the endosperm and embryo are
the diploid maternal tissues, including the pericarp, seed
coat, vascular bundle, and nucellus tissues (Wu et al., 2016a,
2016b). The vascular bundle and nucellus tissues (nucellar
epidermis and nucellar projection) are fused with each other
and play vital roles in the loading, transfer, and exchange of
nutrients between maternal and filial tissues (Krishnan and
Dayanandan, 2003; Liu et al., 2022).

During grain filling, cell layers of different maternal tissues
exhibit dynamic changes in differentiation and degeneration.
Some outer tissues of the caryopsis degenerate prior to
starch accumulation, suggesting they have little effect on
grain filling. The vascular bundles, nucellar projection, and
nucellar epidermis remain alive for a longer time and de-
generate at 21 d after fertilization. This duration matches the
key stage of starch accumulation, highlighting the roles of
these tissues in nutrient transport and grain filling (Wu et al.,
2016b). However, the differentiation of the aleurone layer and
starchy endosperm begins immediately after fertilization.
These tissues accumulate starch throughout the grain filling
stage. Only the aleurone layer and embryo retain live cell
layers in mature grains (Krishnan and Dayanandan, 2003; Liu
et al., 2022). Genes with specific expression patterns in the
above‐mentioned tissues might be directly involved in con-
trolling grain filling in cereals, such as GIF1 (expressed in
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dorsal vascular bundles) (Wang et al., 2008a) and OsPHO1;2
(specially expressed in ovular vasular bundles and the
nucellar epidermis) (Ma et al., 2021).

FACTORS AFFECTING GRAIN
FILLING IN CEREALS

To improve the yield potential of cereals, it is important to
understand the factors that affect grain filling. Numerous
studies in recent years have shown that cereal grain filling
can be affected by many factors. Some factors are involved
in the biological pathways that directly determine grain filling,
including photosynthetic capacity (source), assimilate trans-
port (flow), starch biosynthesis, and cell proliferation (sink).

Other factors including phytohormone levels, nutrient levels,
abiotic stress, and panicle and grain morphology affect
grain filling indirectly via the above‐mentioned four biological
processes (Figure 2).

FOUR BIOLOGICAL PATHWAYS
THAT DIRECTLY AFFECT GRAIN
FILLING

Photosynthetic capacity
Photosynthesis contributes 60%–100% of the carbon source
during grain filling in cereals (Zhai et al., 2002). Assimilates
utilized for grain filling are provided by photosynthesis taking
place in flag leaves and ears/panicles, along with some

Figure 1. Dynamic of filling rice grains and the anatomical structure
(A) Morphology of developing seeds at successive endosperm development stages. DAF means days after fertilization. Scale bar, 1 cm. (B) The diagram of
developing seeds with different maternal tissue and filial tissues at vertical and horizontal cutting surfaces. Tissues of pericarp, seed coat, nucellar
epidermis, ovular vasculature, nucellar projection, aleurone layer, endosperm and embryo are indicated.
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assimilates stored in the culm prior to anthesis (Tambussi
et al., 2007). Several studies have confirmed the large con-
tribution of photosynthesis in ears/panicles to grain filling
(Maydup et al., 2012; Sanchez‐Bragado et al., 2016), and
grain yield has been positively correlated with photosynthetic
capacity in ears (Merah and Monneveux, 2015; Merah et al.,
2017). Chlorophyll content in grains functions as an indicator
of the photosynthetic capacity of developing grains, and both
chlorophyll contents and net photosynthetic rate in grains are
positively correlated with grain filling rate in rice (Chen et al.,
2020). Another study suggested that photosynthesis in ears
is the major contributor to grain filling in wheat and barley
(Hordeum vulgare) (Sanchez‐Bragado et al., 2020). However,
the relationship between leaf photosynthesis and grain filling
requires additional investigation. Murchie et al. (2002) looked
for associations between grain‐filling rate and photosynthesis
in the flag leaves of several rice cultivars, but no obvious
associations were identified (Murchie et al., 2002). Never-
theless, another study detected complete synchronization
between grain filling and highly efficient photosynthetic
function in leaves after heading (Zhai et al., 2002). Assimilates

produced in leaves might not be fully transported to grains for
filling in some varieties, making their relationship unclear.

Assimilate translocation
The transport of assimilates produced by leaf photosyn-
thesis relies on the long‐distance phloem pathway. During
this step, effective coordination among photosynthesis,
assimilate (mainly sucrose) transport efficiency, and sink
activity can greatly increase grain filling. The efficiency of
sucrose translocation is determined by three factors: the
phloem loading, long‐distance transport, and unloading of
sucrose. The transport of sucrose from source to sink
tissue is affected by properties of the vascular bundles,
including their size, number, and flow capacity (Lemoine
et al., 2013). The loading of sucrose into phloem
and its unloading in seeds are coordinated by different
transporters, such as sucrose transporters (SUTs) or
sugar transporters (Sugars will eventually be exported
transporters (SWEETs)), which strongly affect seed de-
velopment and grain filling (Braun et al., 2014). Improving
the efficient loading of sucrose from leaf tissues

Figure 2. Key factors involved in cereals grain filling control
The inner panels show the biological processes directly involving grain filling control, including photosynthesis capacity, assimilates transportation, starch
biosynthesis and cell proliferation. The outer panels show the indirect factors impacting grain filling by the biological processes shown in inner panels,
including phytohormone levels, nutrient levels, abiotic stress, panicle, and grain morphology.
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into the phloem is thought to be crucial for enhancing
the translocation stream, thereby affecting grain filling
(Smith et al., 2018).

Starch biosynthesis
Starch production is divided into two major steps: the un-
loading of the substrate generated by sucrose catabolism
into seeds, and its use for starch biosynthesis (Emes et al.,
2003). Many enzymes are involved in early starch metabo-
lism, including invertase (INVase), sucrose synthase (SUS),
glucokinase (GKase), fructokinase (FKase), phosphoglucoi-
somerase (PGIase), phosphor‐glucomutase (PGMase), ur-
idine diphosphoglucose pyrophosphorylase (UGPase), and
adenosine diphosphoglucose pyrophosphorylase (AGPase).
Sucrose from source organs can be converted into uridine
5ʹ‐diphospho (UDP)‐glucose and fructose by SUS or into
glucose and fructose by INVase. UDP‐glucose and fructose
are the reaction substrates of the key steps in the starch
biosynthesis cascade and serve as potential indicators of the
sink strength of grains and grain‐filling capacity (Sung et al.,
1989; Counce and Gravois, 2006).

The substrates generated in the above early steps are
converted into either amylose by granule‐bound starch syn-
thase (GBSS) or amylopectin by soluble starch synthase (SS),
starch branching enzyme (SBE), and starch debranching
enzyme (DBE) (Nakamura, 2017; Liu et al., 2022). The
activities of SUS, UGPase, and phosphorylase 1 (Pho1) are
key indicators reflecting the differences in sink strength
and grain filling capacity between indica and japonica rice
(Wakabayashi et al., 2021). Moreover, starch biosynthesis
genes, such as OsAGPL3, GBSSI, OsSSIIa, SBEI, ISO-
AMYLASE 2 (ISA2), and OsBEIIb, are under the control of
different TFs that affect grain filling (Wang et al., 2013;
Schmidt et al., 2014; Wang et al., 2020a; Feng et al., 2022).
Although the above‐mentioned metabolic factors are key
indicators of grain filling, few studies have conducted a
combined analysis of all enzymes and intermediate metabo-
lites and their effect on grain filling.

Cell proliferation
Some cellular events such as cell division and endor-
eduplication affect grain filling as well. Many mutants with
specific defects in cell fate in starchy endosperm have been
isolated, most of which show severely reduced filling of
starchy endosperm (Olsen, 2004). The volume of mature
endosperm is determined by cell proliferation during the
early grain‐filling stage. The mitotic division of endosperm
cells lasts for a certain period to support endosperm de-
velopment. The cell division rate and its duration are closely
associated with endosperm development and the capacity
for grain filling (Shaw et al., 2022). Rice cultivars with dense
panicles contain a large proportion of poorly filled grains
that show greatly reduced cell division rates and ploidy but
a longer division duration (Sahu et al., 2021). Therefore,
changes in endosperm cells affect the grain‐filling ability of
cereals.

FOUR OTHER FACTORS
INDIRECTLY INFLUENCE
GRAIN FILLING

Phytohormones levels
Phytohormones are central regulators of seed development
(Kende and Zeevaart, 1997). Most well‐known phyto-
hormones, including auxin, cytokinin, ABA, gibberellin, eth-
ylene, and BRs, play essential roles in regulating seed‐related
traits (Anfang and Shani, 2021). ABA promotes grain filling by
enhancing the mobilization of carbon assimilates into grains
(Yang et al., 2001). Poor grain filling results from low IAA and
ABA levels in the developing endosperm; the external appli-
cation of ABA during the early grain filling stage increased
endogenous ABA levels, thereby enhancing the grain filling
rate (Zhang et al., 2009). Cytokinin plays important roles in
promoting cell division during grain filling. High cytokinin
levels are usually maintained in the endosperm to sustain cell
division (Yang et al., 2002; Zhang et al., 2009). Indeed, in-
creased cytokinin levels enhance grain filling in rice cultivars
with large panicles containing numerous spikelets (Panda
et al., 2018). BRs also positively regulate grain weight by
stimulating the flow of assimilates (Wu et al., 2008) and
promoting mitotic cell division in the lemma/palea (Xu et al.,
2015). Moreover, BRs promote spikelet differentiation, thus
increasing the total number of panicle spikelets (Zhang et al.,
2019b). In contrast to the other phytohormones, the gaseous
phytohormone ethylene negatively regulates grain filling
(Sekhar et al., 2015; Sahu et al., 2021); the cell division rate in
endosperm was reduced via the exogenous application of
ethylene (Panda et al., 2009).

Polyamines (PAs) are hormone‐like substances that
function as endogenous plant growth regulators in many
physiological processes. High PA levels were detected
during seed development, and PA levels were significantly
lower in aborting maize kernels than in normal kernels (Liang
and Lur, 2002). Several studies have shown that the max-
imum cell number and cell division rate, grain weight, and
grain‐filling rate are all correlated with PA contents. The ap-
plication of PAs to panicles enhanced endosperm cell divi-
sion and grain filling (Yang et al., 2008; Feng et al., 2011;
Wang et al., 2012). Another study found that PAs together
with cytokinin coordinately regulate grain filling in wheat,
pointing to the possible interactions of these plant growth
regulators (Liu et al., 2013).

Panicle and grain morphology
Panicle size in rice shows great diversity among varieties,
reflecting different panicle branching types, densities, and
overall grain number. In general, dry matter accumulation
occurs more rapidly and earlier in spikelets on primary rachis
branches than those on secondary branches (Liang et al.,
2001), and assimilate partitioning is poor in grains located on
the basal region of the panicle (Panda et al., 2015). Therefore,
not all spikelets develop into well‐filled grains. Upper early
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spikelets with a high grain‐filling rate are referred to as su-
perior spikelets, and lower later spikelets with poor grain
filling are referred to as inferior spikelets. The contrast be-
tween these spikelet types is greatest in super hybrid rice
cultivars with large panicles (Yang and Zhang, 2010; Zhu
et al., 2011). A recent study showed that the inter‐grain space
in panicles may lead to different rates of grain filling; small
inter‐grain spaces (<0.55 cm) have a negative effect on grain
filling (Sahu et al., 2021). The trade‐off between spikelet
number and grain filling has been linked to ethylene, as a high
spikelet number leads to high ethylene production, which is
detrimental to grain filling (Panigrahi et al., 2019). Analysis of
near isogenic lines (NILs) of Grain Number per Panicle1
(GNP1) revealed the negative effect of grain number per
panicle on grain filling. High GNP1 transcript levels greatly
increased grain number but led to poor grain filling, which
can be explained by the reduced activities of key enzymes
involved in carbon metabolism and reduced carbohydrate
accumulation in culms and leaf sheaths (Wu et al., 2016c).

Seed size also affects grain filling. Many seed size‐related
quantitative trait loci (QTLs) have large effects on grain filling
in rice. Plants with larger seeds showed accelerated grain
filling under most conditions (Song et al., 2007; Li et al., 2011;
Zhang et al., 2012b); one possible explanation is that the
larger spikelet hulls in these plants provided more space for
endosperm growth (Song et al., 2007). In wheat, both carpel
size at anthesis and final grain dimension are positively cor-
related with the grain filling rate; a larger carpel usually leads
to earlier grain filling and a longer grain filling period (Xie
et al., 2015).

Abiotic stress
Environmental factors strongly influence grain filling. One of
the most important such factors is water/drought stress.
Water stress greatly decreases kernel weight by reducing
endosperm cell number and starch granule accumulation,
but it enhances the transport of dry matter to kernels, leading
to early senescence and a short grain‐filling period (Nicolas
et al., 1985; Plaut et al., 2004). Interestingly, Zhang et al.
found that an irrigation regime involving alternate soil wetting
and moderate drying (WMD) improved grain filling of inferior
spikelets by increasing cytokinin contents in shoots (Zhang
et al., 2010a). The authors subsequently discovered that
WMD enhanced the activities of key enzymes involved in
sucrose‐to‐starch conversion, including SUS, AGPase, SS,
and SBE, thereby increasing grain filling rate and grain weight
(Zhang et al., 2012a). PAs are closely associated with im-
proved grain filling in wheat under drought. PAs counteract
the inhibitory effects of drought on grain filling by enhancing
ABA accumulation in grains (Liu et al., 2013, 2016).

High temperature events have occurred more often and
more intensely in recent years due to global warming, which
greatly affects the growth and development of major cereal
crops. Short episodes of high temperature stress during grain
filling significantly reduce grain weight and increase yield loss
in wheat, mainly due to increased thylakoid membrane

damage (Djanaguiraman et al., 2020). High nighttime tem-
peratures are more harmful to grain filling in rice than high
daytime temperatures (Morita et al., 2002). High nighttime
temperatures significantly reduce endosperm cell number
and cell area, ultimately leading to decreased grain filling
(Morita et al., 2005). Shi et al. performed a proteomic study of
rice to study the effect of elevated nighttime temperatures on
grain filling. Under these conditions, nitrogen and non‐
structural carbohydrate (NSC) transport were reduced in
susceptible rice cultivars, resulting in reduced maximum and
average grain‐filling rates. The increased levels of heat shock
proteins and calcium signaling proteins in resistant cultivars
might explain their resistance to high nighttime temperatures
(Shi et al., 2013). In addition to high temperatures, low tem-
peratures at the filling stage also affect grain filling. Under low
temperatures, grain filling is inhibited, mainly due to a
reduced starch biosynthesis rate (Xu et al., 2021a).

Nutrient levels
Nitrogen (N) and phosphorus (P) fertilizers are essential
agronomic resources that affect crop growth, yield, and
quality as well as grain filling. The application of N improves
sucrose production by leaf photosynthesis, which might af-
fect the grain filling rate (Wei et al., 2018). In rice, low N levels
promote grain filling in superior grains rather than inferior
grains. The activities of starch biosynthesis‐related enzymes,
the accumulation of NSCs in stems, and the redistribution of
NSCs from stems to grains were all enhanced by low N
treatment (Li et al., 2018a). Another study found that N fer-
tilization during the middle and later stages of grain filling
improved the grain‐filling rates of both superior and inferior
grains, as higher N levels increased the carbohydrate con-
tents of leaves and enhanced the unloading of sucrose to
grains. This enhanced carbohydrate partitioning increased
the uniformity of inferior grain filling and therefore reduced
the overall rate of chalkiness (Guo et al., 2022). P fertilizer
also affects grain filling, as the exogenous application of P
during grain filling greatly increased grain weight compared
to plants with a minimum P supply (Jeong et al., 2017).

GENES AND MOLECULAR
MECHANISMS UNDERLYING
GRAIN FILLING IN CEREALS

Both internal and external factors affect the performance of
cereal grain filling, making cloning of the underlying genes
quite challenging. Nevertheless, with the increasing devel-
opment of molecular and genetic methodologies, the list of
cloned genes is getting longer each year, with more than 70
genes that participate in cereal grain filling (Table 1). To ob-
tain an overall view of the roles of these genes in grain filling,
we constructed a diagram of the key genes involved in sugar
transport, starch biosynthesis, and phytohormonal regulation
and their molecular connections. We also highlight some
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Table 1. Identified grain filling regulators in cereals

Gene name Function description Mutant phenotype References

Sugar translocation and unloading related regulators

Sh1 Sucrose synthase Shrunken endosperm Chourey et al., 1998

GIF1/CIN2 Cell wall invertase Incomplete grain filling Wang et al., 2008a

Mn1 Cell wall invertase Incomplete grain filling Kang et al., 2009

OsINV3 Vacuolar invertase Reduced grain size and weight Morey et al., 2018

OsSWEET4 Sugar transporter Empty pericarp phenotype Sosso et al., 2015

OsSWEET11 Sugar transporter Defective grain filling Ma et al., 2017

OsSWEET14 Sugar transporter No grain filling phenotype Fei et al., 2021

OsSWEET15 Sugar transporter No grain filling phenotype Yang et al., 2018

SWEET4c Sugar transporter Empty pericarp phenotype Sosso et al., 2015

ZmSWEET11 Sugar transporter — Shen et al., 2022

OsSUT1 Sucrose transporter Impaired grain filling Scofield et al., 2002

ZmSUT1 Sucrose transporter — Shen et al., 2022

OsMST4 Monosaccharide transporter — Wang et al., 2007

OsMST6 Monosaccharide transporter — Wang et al., 2008b

ZmSUGCAR1 Sugar transporter Shrunken kernels Yang et al., 2022a

GFD1 MATE (Multidrug and toxic compound extrusion)
transporter

Long grain filling duration Sun et al., 2022

Phytohormones related regulators

OsRR4/OsRR6 Type‐A response regulator — Panda et al., 2018

ZmYuc1 YUCCA (YUC) flavin‐containing monooxygenase Defective endosperm Bernardi et al., 2012

OsYUC11 YUCCA (YUC) flavin‐containing monooxygenase Defected grain filling Xu et al., 2021b;
Zhang et al., 2021b

TGW6 Indole‐3‐acetic acid (IAA)‐glucose hydrolase Enhanced grain filling Ishimaru et al., 2013

qGL11/OsGH3.13 IAA‐amido synthetase Increased grain weight Wang et al., 2021a

BG1 Cytoplasmic membrane‐associated protein Decreased grain size Liu et al., 2015b

ZmEHD1 C‐terminal Eps15 homology domain (EHD) proteins Shrunken kernel Wang et al., 2020b

OsABA8ox2 Abscisic acid (ABA) 8′‐hydroxylase Improved grain filling Teng et al., 2022

DG1 ABA efflux transporter Defected grain filling Qin et al., 2021

OsNAP NAC (No Apical Meristem) transcriptional activator Extended grain filling with
increased grain yield

Liang et al., 2014

CYP Sterol C‐22 hydroxylases — Wu et al., 2008

OsI‐BAK1 BRI1 associated kinase I (BAK1) homolog Unfilled grains with defect grain
filling

Khew et al., 2015

Starch synthesis related regulators

OsAGPL2 Adenosine diphosphate (ADP)‐glucose
pyrophosphorylase (AGP) large subunit

Shrunken endosperm Tang et al., 2016;
Wei et al., 2017

OsAGPS2b AGP small subunit Shrunken endosperm Lee et al., 2007

Sh2 AGP large subunit Shrunken kernels Greene and Hannah, 1998

Bt2 AGP small subunit Shrunken kernels Greene and Hannah, 1998

OsGBSSI/Waxy Granule‐bound starch synthase I Starchy endosperm with
reduced starch content

Sano 1984; Sato et al., 2002;
Zhang et al., 2019a

OsSSIIa Starch synthase II Increased chalkiness Zhang et al., 2011

OsSSIIIa Starch synthase III White‐core floury endosperm Ryoo et al., 2007;
Zhang et al., 2011

OsSBEI Starch branching enzyme I No obvious differences Zhu et al., 2012;
Sun et al., 2017

OsSBEIIb Starch branching enzyme II Complete floury endosperm Tanaka et al., 2004

OsISA1 Isoamylase Shrunken endosperm Shufen et al., 2019

OsPho1 Phosphorylase Shrunken endosperm Satoh et al., 2008

RSR1 APETALA2 (AP2)/ETHYLENE‐RESPONSIVE
ELEMENT BINDING PROTEIN (EREBP)
transcription factor (TF)

Increased amylose content Fu and Xue, 2010

Continued
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other important regulators linking different pathways that
regulate grain filling (Figure 3).

Genes for sugar transport and unloading participate
in grain filling
Grain filling largely depends on the efficient transport and
unloading of sucrose from source tissues to sink tissues.
Several genes involved in sucrose transport and unloading

have been shown to regulate grain filling. Shrunken1 (Sh1),
encoding SUS, is a key regulator of grain filling in maize; the
sh1 mutant shows typical shrunken endosperm (Chourey
et al., 1998). GIF1 (also named CELL WALL INVERTASE 2
(OsCIN2)) and Mn1, encoding cell wall invertase, are key grain
filling‐related genes in rice and maize, respectively; the loss of
GIF1 andMn1 function led to an approximately 24% and 70%
reduction in seed weight, respectively (Wang et al., 2008a;

Table 1. Continued

Gene name Function description Mutant phenotype References

OsbZIP58 Basic leucine zipper factor TF Opaque grains Wang et al., 2013

SERF1 SALT‐RESPONSIVE ETHYLENE RESPONSE
FACTOR 1

Enhanced grain filling Schmidt et al., 2014

OsNCA20/26 NAC TFs Decreased starch Wang et al., 2020a

OsNF‐YB1 Nuclear factor‐Y TF subunit B Small grains with chalky
endosperm

Bai et al., 2016;
Xu et al., 2016

OsMADS6 MADS‐box TF Lacked and aborted starch filling Zhang et al., 2010b

OsMADS29 MADS‐box TF Shrunken endosperm Yin and Xue 2012

OsMADS14 MADS‐box TF Shrunken and chalky grains Feng et al., 2022

Other regulators

ONAC127/129 NAC domain TF Incomplete grain filling and
shrunken grains

Ren et al., 2021

OsNAC23 NAC domain TF Small grain size Li et al., 2022

Opaque2 (O2) bZIP‐type TF Opaque endosperm Cord Neto et al., 1995;
Li et al., 2015

ZmABI19 B3 domain‐containing TF Small and shrunken kernels Yang et al., 2021

ZmbZIP29 Basic Leucine Zipper 29 Small kernels with delayed
endosperm development

Yang et al., 2022b

ZmGRAS11 GRAS domain‐containing protein Reduced kernel size and cell
expansion

Ji et al., 2022

miR1432 microRNA Enhanced grain filling Zhao et al., 2019

KRP1 Cyclin‐dependent kinase (CDK) inhibitor — Barroco et al., 2006

DEK15 Cohesion‐loading complex subunit Reduced endosperm He et al., 2019

OsPK2 Pyruvate kinase Defective grain filling Cai et al., 2018

OsPK3 Pyruvate kinase Compromised grain filling Hu et al., 2020

FLO19 Pyruvate dehydrogenase complex E1 component
subunit

Slower grain filling rate and
reduced grain weight

Lei et al., 2022

OsGS1;1 Glutamine synthetase Retardation of grain filling Tabuchi et al., 2005

Gln1‐3/4 Glutamine synthetase Reduced kernel weight Martin et al., 2006

PHO1;2 PHO1 (phosphorylase 1)‐type Pi transporter Shrunken endosperm Ma et al., 2021

OsFIE2 WD40‐containing component of polycomb repressive
complex 2

Smaller seeds Nallamilli et al., 2013

OsCPK31 Ca2+ sensor protein kinases Partial unfilled grains Manimaran et al., 2015

GSD1 A putative remorin protein Reduced grain setting Gui et al., 2014

OsQUA2 A putative pectin methyltransferase Reduced grain yield Xu et al., 2017

GFR1 Membrane‐localized protein Decreased grain filling rate Liu et al., 2019

EDR1 Uridine 5ʹ‐diphospho (UDP)‐glucosyltransferase Incomplete filled grains Wu et al., 2022

GW2 RING‐type protein Increased grain size Song et al., 2007

qGL3/OsPPKL1 Putative protein phosphatase Long grains Zhang et al., 2012b

GS5 Putative serine carboxypeptidase Small grain size and decreased
grain filling

Li et al., 2011;
Xu et al., 2015

OsAsp1 Aspartic protease Eliminated grain filling difference
between SS and IS

Chang et al., 2020

GF14f 14‐3‐3 protein Increased grain weight Zhang et al., 2019c
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Li et al., 2013). In developing rice seeds, GIF1 is primarily
expressed in the ovular vascular trace, where sucrose is un-
loaded for starch biosynthesis in the endosperm. The tissue‐
specific expression of GIF1 is important for normal grain filling,
as its ectopic overexpression driven by the cauliflower mosaic
virus 35S promoter led to poorly filled and severely shrunken
seeds, in contrast to the enhanced grain weight in GIF1‐
overexpression lines driven by the native promoter (Wang
et al., 2008a). The constitutive overexpression of either GIF1 or
Mn1 significantly increased grain weight and yield in maize,
pointing to the functional conservation and ubiquitous ex-
pression of maize invertase genes (Wang et al., 2008a; Li et al.,
2013). The vacuolar invertase gene OsINV3 plays key roles in
cell expansion and in driving the transport of assimilates for
grain filling, and its mutation leads to greatly reduced grain
size and weight (Morey et al., 2018).

Sugar transporters of the SWEET family play important
roles in grain filling. Maize ZmSWEET4c, the first SWEET
identified in cereals, mediates the transport of transepithelial
hexose across the basal endosperm transfer layer (BETL).

ZmSWEET4c shows signatures of selection during domes-
tication (Sosso et al., 2015). Mutants of ZmSWEET4c and its
rice ortholog OsSWEET4 show defects in grain filling. Inter-
estingly, SWEET4 encodes a hexose transporter that likely
functions downstream of GIF1/Mn1 (Sosso et al., 2015).

OsSWEET11 is another regulator of grain filling in which the
knockout mutant shows severe defects in grain filling. Os-
SWEET11 is primarily expressed in the ovular vascular trace
and nucellar epidermis, and regulates the release of sucrose
from maternal tissues to filial tissues in the developing car-
yopsis (Ma et al., 2017). The Ossweet11 Osweet15 double
mutant shows more severe grain filling defects than the Os-
sweet11 single mutant, and the double mutant accumulates
more starch in the pericarp. The similar tissue‐specific ex-
pression patterns of OsSWEET11 and OsSWEET15 suggest
their function in both sugar efflux from the nucellar projection
and sugar influx into the nucellar epidermis/aleurone interface
(Yang et al., 2018). Unlike SWEET4, OsSWEET11, and Os-
SWEET15 primarily function during the later filling stages
(Sosso et al., 2015; Yang et al., 2018). A recent study revealed

Figure 3. Regulation networks of reported grain filling genes in cereals
The key grain filling genes are categorized into four major groups, including sugar translocation, phytohormones regulation, starch biosynthesis, and other
regulators. In addition, some group regulators may interact with each other, and the regulation networks of different genes are indicated.
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that OsSWEET14 and OsSWEET11 cooperatively contribute
to grain filling in rice. The expression profile of OsSWEET14 is
similar to that of OsSWEET11, and the phenotype of the Os-
sweet14 Ossweet11 double knockout mutant was much more
severe than that of the Ossweet11 single mutant (Fei et al.,
2021). Although OsSWEET11, OsSWEET14, and OsSWEET15
might function redundantly in regulating grain filling, all three
transporters are likely required to cooperatively regulate grain
filling during seed development.

Once sugars arrive at the aleurone layer, they are trans-
ported into the endosperm by aleurone‐specific SUTs. The
rice genome contains five SUT genes: OsSUT1‐5 (Aoki et al.,
2003). Antisense suppression of OsSUT1 resulted in strongly
reduced sucrose uptake in seeds, as well as decreases in
both grain filling rate and grain weight (Scofield et al., 2002).
In addition to SUTs, monosaccharides including glucose and
fructose could be immediately transported into the endo-
sperm by monosaccharide transporters (MSTs). Among rice
MST genes, OsMST4, and OsMST6 are expressed in the
dorsal vascular bundle, nucellar epidermis, and aleurone
layer and play important roles in the early and middle grain‐
filling stages (Wang et al., 2007, 2008b).

In addition to classic sugar transporters, a recent study
demonstrated that an NRT1 (NITRATE TRANSPORTER)/
PTR (PEPTIDE TRANSPORTER)‐type transporter named
SUGCAR (SUCROSE AND GLUCOSE CARRIER) functions in
both sucrose and glucose transport in maize (Yang et al.,
2022a). ZmSUGCAR1 is specifically expressed at the BETL.
Mutations of ZmSUGCAR1 decrease the accumulation of
sucrose and glucose in the kernel and lead to a shrunken
kernel phenotype. The sugar transport activities of SUGCAR
homologs were also demonstrated in wheat and sorghum
(Sorghum bicolor), suggesting a conserved mechanism in
cereals (Yang et al., 2022a). MATEs (Multidrug and toxic
compound extrusion transporters) are cation antiporters that
constitute one of the largest transporter families in most or-
ganisms. The rice MATE transporter GRAIN FILLING DURA-
TION MUTANT 1 (GFD1) determines the grain filling by in-
teracting with two sugar transporters, OsSWEET4 and
OsSUT2, with OsSWEET4 mediating its effect on the grain
filling duration, with OsSUT2 regulating grain size and grain
number (Sun et al., 2022). These findings shed light on the
sugar transporter interactome that controls grain filling.

Phytohormone‐related regulators of grain filling
Cytokinin increases endosperm cell number during grain
filling (Werner et al., 2001). OsRR4 and OsRR6 encode type‐A
response regulators involved in cytokinin signaling. Over-
expressing either genes improved cytokinin levels in the de-
veloping caryopsis, likely leading to enhanced grain filling in
rice cultivars with large panicles (Panda et al., 2018), although
this hypothesis requires experimental validation.

Auxin is closely related to endosperm development and
grain filling (Zhao, 2018). The developing kernels of mutants
with abnormal grain filling (such as mn1) show reduced auxin
levels (Le et al., 2010). YUCCA (YUC) flavin monooxygenases

catalyze a rate‐limiting step in auxin biosynthesis. In maize,
ZmYuc1 plays an essential role in endosperm development
by affecting IAA biosynthesis; in agreement, the Zmyuc1
mutant has defective endosperm (Bernardi et al., 2012). The
mutation of OsYUC11 leads to defects in grain filling and
reduced auxin biosynthesis, confirming the notion that auxin
biosynthesis is essential for grain filling (Xu et al., 2021b;
Zhang et al., 2021b). In addition, OsYUC11 might promote
grain filling by mitigating the effects of dry soil, as OsYUC11
is upregulated under drought stress (Teng et al., 2022).

The rice QTL THOUSAND‐GRAIN WEIGHT 6 (TGW6) is
caused by a polymorphism in a gene that encodes an IAA‐
glucose hydrolase and catalyzes the conversion of IAA‐
glucose to free IAA in the developing caryopsis. The func-
tional TGW6 allele accelerates endosperm cellularization
combined with increased auxin accumulation, while the loss
of function allele of TGW6 enhances rice grain filling and grain
weight (Ishimaru et al., 2013). OsGH3.13, encoding an IAA‐
amido synthetase, is the underlying gene of the QTL GRAIN
LENGTH 11 (qGL11). NIL with lower expression of OsGH3.13
showed increased grain weight and higher IAA content.
Knocking out of OsGH3.13 led to enhanced grain weight,
confirming its role in seed development (Wang et al., 2021a).

Auxin transport is also involved in seed development and
grain filling, as blocking auxin transport led to abnormalities
in different seed tissues (Forestan et al., 2010). Big Grain1
(BG1) encodes a membrane‐localized protein that regulates
auxin transport in rice. Overexpression of BG1 increased
basipetal auxin transport and altered auxin distribution,
thereby increasing grain size, whereas knockdown of BG1
resulted in decreased auxin transport and smaller grains (Liu
et al., 2015b). ZmEHD1 encodes a C‐terminal Eps15 ho-
mology domain (EHD) protein that regulates auxin homeo-
stasis, as the ehd1 mutant showed shrunken kernels and
reduced IAA levels in kernels (Wang et al., 2020b).

Numerous studies have shown that higher ABA levels in
grains result in increased grain filling and grain weight in
various crops (Seiler et al., 2011; Zhang et al., 2018b).
OsABA8ox2 encodes ABA 8′‐hydroxylase, which catalyzes
the committed step of ABA catabolism. In the aba8ox2
mutant, the grain filling of inferior spikelets is greatly en-
hanced, while overexpressing OsABA8ox2 significantly re-
duced grain filling (Teng et al., 2022). DEFECTIVE GRAIN‐
FILLING 1 (DG1) in rice mediates the long‐distance transport
of ABA from leaves to the caryopsis. Mutants in DG1 fail to
accumulate leaf‐derived ABA, which activates starch bio-
synthesis genes, leading to the formation of incompletely
filled, floury seeds (Qin et al., 2021). Similar grain‐filling de-
fects were observed in mutants of the maize DG1 ortholog,
pointing to a conserved role for DG1 in cereals (Qin et al.,
2021). PREMATURELY SENILE 1 (PS1, also named OsNAP
for NAC activated by APETALA3/PISTILLATA) encodes a
plant‐specific NAC transcriptional activator that links ABA
with leaf senescence and grain filling. OsNAP expression is
specifically induced by ABA, while ABA levels were sig-
nificantly reduced in OsNAP overexpression lines, pointing
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to a feedback loop between OsNAP and ABA. Notably, the
downregulation of OsNAP contributes to yield improvement
due to delayed leaf senescence and an extended grain‐
filling period (Liang et al., 2014).

BRs also positively regulate grain filling (Xu et al., 2015).
CYTOCHROME P450 (CYP) genes encode sterol C‐22
hydroxylases, which function in BR biosynthesis. Over-
expressing CYP genes significantly enhanced grain filling in
rice, particularly in basal inferior grains (Wu et al., 2008).
BRI1‐ASSOCIATED KINASE I (BAK1) interacts with the BR
receptor BR‐INSENSITIVE 1 (BRI1) to function in BR per-
ception and BR signal transduction. The rice BAK1 homolog
OsI‐BAK1 is highly expressed after heading, and silencing of
OsI‐BAK1 led to the production of green and unfilled grains
(Khew et al., 2015).

Although these studies established the relationships be-
tween phytohormones and grain filling, the molecular net-
work underlying phytohormone‐mediated regulation of grain
filling requires further study.

Starch biosynthesis regulators control grain filling
Starch in cereals is composed of a mixture of amylose and
amylopectin. Starch biosynthesis in cereals is catalyzed by a
complex system composed of five classes of enzymes: AG-
Pase, GBSS, SS, SBE, and DBE (Jeon et al., 2010; Huang
et al., 2021). AGPase catalyzes the rate‐limiting step of starch
biosynthesis in cereal plants, which produces adenosine
diphosphoglucose (ADP‐glucose) and pyrophosphate (PPi)
from glucose‐1‐phosphate (G1P) and adenosine 5'‐
triphosphate (ATP) (Ballicora et al., 2004). Several studies
have revealed that AGPase genes play key roles in grain
filling, including AGPL2 and AGPS2b, which are specifically
expressed in endosperm. Loss of function of either AGPL2 or
AGPS2b in rice and their maize orthologs Sh2 or Brittle‐2
(Bt2) seriously disrupts starch biosynthesis and leads to
shrunken grains (Greene and Hannah, 1998; Lee et al., 2007;
Tang et al., 2016; Wei et al., 2017).

In cereals, amylose is synthesized by GBSS, which has
two isoforms: GBSSI and GBSSII (Jeon et al., 2010). GBSSII
is mainly present in leaf tissues and maternal tissues of de-
veloping seeds and is responsible for transitory starch ac-
cumulation in these tissues. GBSSI is only present in filling
endosperm and is responsible for amylose synthesis in seeds
(Vrinten and Nakamura, 2000; Dian et al., 2003; Hirose and
Terao, 2004). GBSSI is encoded by Waxy (Wx), with different
natural alleles (Zhang et al., 2019a, 2021a). Null mutants of
Wx do not have significantly altered total starch contents, but
they have significantly reduced amylose contents in starchy
endosperm (Sano, 1984; Fujita et al., 2001; Sato et al., 2002).

Amylopectin biosynthesis is catalyzed by SS, SBE, and
DBE. SS functions in linear glucan chain elongation by cat-
alyzing the transfer of the glucosyl unit of ADP‐glucose to the
nonreducing end of a glucan chain. Four isoforms of SS have
been identified in cereal endosperm: SSI, SSII, SSIII,
and SSIV (Jeon et al., 2010). Mutants defective in these
genes (such as SSIIa and SSIIIa) show abnormalities in

endosperm‐stored starch, leading to grain chalkiness and
poor grain filling (Ryoo et al., 2007; Zhang et al., 2011). Ce-
reals contain three isoforms of SBE: SBEI, SBEIIa, and
SBEIIb. SBEIIb is specifically expressed in endosperm; its
null mutant produces thin, floury grains (Tanaka et al., 2004).
Simultaneously inhibiting both SBEI and SBEIIb expression
resulted in heavy, opaque grains and reduced grain weight
(Zhu et al., 2012), suggesting that SBEI and SBIIb are es-
sential for normal grain filling. DBE consists of ISA, pul-
lulanase (PUL), and Pho. ISA has three isoforms: ISA1, ISA2
and ISA3. ISA1 is essential for endosperm development and
grain filling, as the isa1 mutant displays shrunken endosperm
with abnormal starch granules (Shufen et al., 2019). The pho1
mutants show shrunken endosperm and severely reduced
starch content, indicating that Pho1 regulates grain filling
(Satoh et al., 2008).

The expression of genes encoding enzymes for
seed starch biosynthesis is regulated by different TFs and
regulatory proteins. Rice Starch Regulator1 (RSR1) encodes
an APETALA 2 (AP2)/ETHYLENE‐RESPONSIVE ELEMENT
BINDING PROTEIN (EREBP) family TF, deficiency of which
results in enhanced expression of starch biosynthesis genes
in seeds. rsr1 mutants produce larger seeds with a higher
seed mass and amylose content than the wild type but with
round, loosely packed starch granules, leading to a chalky
phenotype (Fu and Xue, 2010). Basic leucine zipper
58 (OsbZIP58) directly binds to the promoters of six starch
biosynthesis genes: OsAGPL3, Wx, SSIIa, SBEI, SBEIIb,
and ISA2. The Osbzip58 null mutant produces white belly
grains (Wang et al., 2013). SALT‐RESPONSIVE ETHYLENE
RESPONSE FACTOR 1 (SERF1) directly regulates the
expression of GBSSI. Loss of function of SERF1 enhances
starch biosynthesis and grain filling (Schmidt et al., 2014).

The NAC TFs OsNAC20 and OsNAC26 mainly localize to
the aleurone layer and starchy endosperm. The Osnac20
Osnac26 double mutant has significantly reduced starch
content compared to the wild type. Both OsNAC20 and
OsNAC26 directly activate the expression of SSI, PUL,
AGPL2, and AGPS2b, thus playing essential and redundant
roles in regulating starch biosynthesis (Wang et al., 2020a).
NF‐YB1 directly binds to a G‐box in the Wx promoter and
activates its transcription (Xu et al., 2016). NF‐YB1 also binds
to CCAAT boxes in the SUT1, SUT3, and SUT4 promoters
and activates their expression, thereby regulating grain filling
(Bai et al., 2016; Xu et al., 2016). Additionally, NF‐YB1 also
regulates the expression of OsYUC11 (Xu et al., 2021b),
suggesting that NF‐YB1 has wide regulatory targets.

MADS‐box TFs also transcriptionally regulate starch bio-
synthesis genes. MADS6 is highly expressed in rice spikelets
and endosperm. MADS6 regulates the expression of AGPase
genes to affect grain filling. The mutation of MADS6 severely
affects endosperm, as 32% of the mutant seeds lacked
starch or were aborted (Zhang et al., 2010b). MADS29 is
preferentially expressed in the nucellus and the nucellar
projection. Suppressing the expression of MADS29 resulted
in abnormal seed development with shrunken seeds, a
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reduced grain‐filling rate, and suppressed starch biosyn-
thesis (Yin and Xue, 2012). A recent study determined that
OsMADS14 regulates grain filling by interacting with NF‐YB1
to promote the transcription of OsAGPL2 and Wx. Mutations
of OsMADS14 result in a shrunken and chalky grain pheno-
type (Feng et al., 2022).

OTHER GENETIC REGULATORS
OF GRAIN FILLING

Key TFs and microRNAs
In addition to genes involved in starch biosynthesis, TFs di-
rectly regulate the expression of other types of genes im-
portant for regulating grain filling. Two seed‐specific NAC
domain TFs, ONAC127 and ONAC129, are responsive to
heat stress and function in rice grain filling by forming het-
erodimers. ONAC127 and ONAC129 are mainly expressed in
the pericarp, and both single and double knockouts and
overexpression plants showed incomplete grain filling and
shrunken grains. ONAC127 and ONAC129 directly bind to
the promoters of OsMST6 and OsSWEET4, suggesting these
TFs regulate grain filling by affecting sugar transport
(Ren et al., 2021). Trehalose‐6‐phosphate (Tre6P) mediates
the sensing of carbon status and adjusts the sucrose levels in
both source and sink organs (Figueroa and Lunn, 2016).
OsNAC23 was recently shown to regulate Tre6P signaling in
rice. OsNAC23 increases Tre6P levels by directly targeting
and repressing the Tre6P phosphatase gene TPP1. Both
OsNAC23 overexpression lines and tpp1 mutants showed
enhanced leaf sucrose efflux, which facilitated grain filling
and improved grain yield (Li et al., 2022). Therefore, the
OsNAC23‐TPP1‐Tre6P regulatory module might be an ideal
target for rice breeding.

The endosperm‐specific TF Opaque2 (O2) is a central
regulator of endosperm filling in maize. O2 binds to the SUS‐
encoding genes Sh1, Sus1, and Sus2 to enhance SUS‐
mediated endosperm filling (Deng et al., 2020). Moreover, O2
directly activates the expression of ZmGRAS11, encoding an
endosperm‐specific GRAS domain‐containing protein, to fa-
cilitate grain filling by coordinating cell expansion (Ji et al.,
2022). ZmABI19 is a B3 domain TF that activates the ex-
pression of both O2 and SWEET4c by directly binding to their
promoters. Zmabi19 mutants display opaque mature
kernels and reduced grain size, indicating that ZmABI19
regulates grain filling (Yang et al., 2021). The TF ZmbZIP29
interacts with ZmABI19 to regulate O2 expression; Zmbzip29
seeds develop more slowly and are smaller at maturity than
the wild type. More severe seed phenotypes were observed
in the Zmbzip29 Zmabi19 double mutant compared to the
single mutants, and their storage reserves were also greatly
reduced, indicating that ZmABI19 and ZmbZIP29 serve as
hubs to coordinate grain filling. Overexpressing ZmABI19 or
ZmbZIP29 increased both storage‐reserve accumulation and
kernel weight, pointing to their potential for breeding appli-
cations (Yang et al., 2022b). The activities of ZmABI19 and

ZmbZIP29 are enhanced by ABA, as ABA induces the ac-
cumulation of Sucrose non‐fermenting‐like kinase 2.2
(SnRK2.2), which interacts with both proteins and enhances
their transactivation of O2 (Yang et al., 2022b). These findings
uncover a molecular connection between ABA signaling and
the control of grain filling.

MicroRNAs (miRNAs), a large class of gene expression
regulators, affect grain filling by regulating the transcript levels or
translatability of their target genes at different stages of endo-
sperm development. The dynamic expression patterns of
miRNAs during rice grain filling have been fully explored. The
accumulation of many miRNAs is negatively correlated with the
grain filling rate (Xue et al., 2009; Peng et al., 2013). Some
miRNAs differentially accumulate between superior and inferior
rice grains and may be involved in pathways regulating phyto-
hormone metabolism, carbohydrate metabolism, and cell divi-
sion (Peng et al., 2011, 2014). miR1432 negatively regulates
grain filling, as transgenic lines with suppressed miR1432 ex-
pression showed enhanced grain filling and grain yield. The acyl‐
CoA thioesterase gene OsACOT, a major cleavage target of
miR1432, functions in the biosynthesis of medium‐chain fatty
acids. Rice plants overexpressing a miR1432‐resistant form of
OsACOT showed an up to 46.7% increase in grain weight due
to an improved grain filling rate, indicating that the miR1432‐
OsACOT module has great potential as a target for yield im-
provement (Zhao et al., 2019).

Cell cycle‐related genes
Genes involved in the cell cycle and cell proliferation also
regulate grain filling. The cyclin‐dependent kinase inhibitor
Orysa;KRP1 (Kip‐related protein 1) plays an important role in
regulating grain filling. Overexpressing Orysa;KRP1 dramati-
cally reduced seed filling due to disturbed endosperm cell
production (Barroco et al., 2006). By contrast, krp2 and krp1
krp2 mutants exhibited significantly reduced seed width,
seed length, and grain weight compared to the wild type,
suggesting that KRP1 and KRP2 might function in grain filling
by inhibiting cell proliferation and enlargement (Ajadi et al.,
2019). The maize gene Defective kernel 15 (Dek15) encodes a
homolog of SISTER CHROMATID COHESION PROTEIN 4
(SCC4). The mitotic cell cycle and endoreduplication are
disrupted in the dek15 mutant, resulting in reduced endo-
sperm size and embryo lethality (He et al., 2019).

Pyruvate metabolism‐related genes
Pyruvate kinase (PK) is a key enzyme that regulates the final
step of the glycolysis pathway. Several PK genes were re-
cently shown to function in rice grain filling. The Ospk2 mu-
tant displays reduced grain weight and starch content,
pointing to a role for OsPK2 in starch biosynthesis and grain
filling, but the exact molecular mechanism is still unclear (Cai
et al., 2018). The Ospk3 mutant also shows defects in grain
filling, with a large proportion of unfilled grains and a mark-
edly reduced grain filling rate, grain thickness, and grain
weight. More sucrose and transitory starch were retained in
mutant leaves than the wild type, leading to reduced
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accumulation of storage materials in grains. Therefore,
OsPK3 regulates grain filling by coordinating sucrose trans-
location (Hu et al., 2020). OsPK3 interacts with the PK iso-
zymes OsPK1 and OsPK4. All three enzymes are located in
mitochondria. Disrupting OsPK3, OsPK1, or OsPK4 led to
different degrees of defective grain filling, suggesting that
OsPK3‐OsPK1/OsPK4 form heterodimers in vivo to coordin-
ately regulate grain filling (Hu et al., 2020).

The pyruvate provided by the glycolytic pathway can be
converted into acetyl‐CoA and nicotinamide adenine dinu-
cleotide hydrogen by the pyruvate dehydrogenase complex.
FLOURY ENDOSPERM 19 (FLO19) encodes a plastid‐
localized pyruvate dehydrogenase complex E1 component
subunit in rice. The flo19 mutant has a slower grain filling rate
and lower 1 000‐grain weight compared to the wild type.
Developing endosperm of the flo19 mutant contains altered
membrane lipid contents, which might affect starch biosyn-
thesis and starch grain development. Overexpressing FLO19
increased grain size and grain yield in rice, suggesting that
this gene could be valuable for rice breeding (Lei et al., 2022).

Nitrogen and phosphate‐related genes
Glutamine synthetase (GS) converts glutamate and ammo-
nium ions to glutamine, the main form of transported N in
plants. Rice contains three homologous but distinct genes
encoding cytosolic GS: OsGS1;1, OsGS1;2, and OsGS1;3.
Knockout mutants of OsGS1;1 showed a severely retarded
growth rate and grain filling, indicating that OsGS1;1 is im-
portant for normal growth and grain filling. OsGS1;1 is highly
expressed in leaves, suggesting it indirectly affects grain filling
by influencing plant type, photosynthesis, or nutrient transport
(Tabuchi et al., 2005). Either single or double mutation of two
GS isoforms in maize, Gln1‐3 and Gln1‐4, strongly reduced
kernel weight and yield, while overexpressing Gln1‐3 or Gln1‐4
significantly increased grain yield with enhanced GS activity
(Martin et al., 2006). These observations suggest that GSs are
closely related to grain filling in cereals, in part building a link
between N levels and grain filling.

Phosphate (Pi) is another macroelement that is essential
for plant growth and crop yields. A recent study showed that
the PHO1‐type Pi transporter PHO1;2 is a key regulator of
grain filling in both rice and maize, clarifying the relationship
between grain filling and Pi transport. Ospho1;2 mutants
show strongly reduced grain filling, with reduced starch
contents and shrunken endosperm. The Pi efflux activity of
OsPHO1;2 and its plasma membrane localization in seed
tissues point to a specific role for OsPHO1;2 in Pi reallocation
in filling grains. The mutation of OsPHO1;2 leads to increased
accumulation of Pi in the endosperm, thereby inhibiting both
the expression of AGPase and the activity of the encoded
protein and thus grain filling (Ma et al., 2021).

Polycomb complexes, protein kinases, remorin,
and pectin methyltransferase
Polycomb complexes play key roles in regulating
endosperm development in cereals via histone modifications.

FERTILIZATION‐INDEPENDENT ENDOSPERM 2 (OsFIE2) is
responsible for the H3K27me3 modification of many
endosperm‐specific genes in rice. Reduced OsFIE2 ex-
pression led to partially filled and smaller grains, highlighting
its role in controlling grain filling. OsFIE2 controls the
H3K27me3 modification at OsMADS6, which partially ex-
plains its effect on grain filling (Nallamilli et al., 2013). Ca2+

sensor protein kinases have been identified in most plant
species including cereals. The rice cyclin‐dependent protein
kinase (CDPK) gene OsCPK31 was functionally validated by
overexpressing and silencing this gene in rice cultivar TP309.
OsCPK31‐overexpressing plants showed rapid grain filling
and early maturation, while silencing of OsCPK31 led to in-
creased numbers of unfilled grains without any difference in
maturity duration. However, the underlying mechanism of the
role of OsCPK31 in regulating grain filling requires further
investigation (Manimaran et al., 2015).

GRAIN SETTING DEFECT 1 (GSD1) encodes a putative
remorin protein that affects grain setting and filling in rice.
The dominant gsd1‐D mutant shows reduced carbohydrate
accumulation in leaves and a reduced grain setting rate.
GSD1 specifically localizes to the plasma membrane and
plasmodesmata of phloem companion cells, suggesting it
regulates the translocation of photo‐assimilates via the
symplastic pathway to affect grain setting and grain filling in
rice (Gui et al., 2014). Homogalacturonan (HG) is the main
component of pectins. QUASIMODO 2 (OsQUA2) encodes a
putative pectin methyltransferase. Osqua2 mutants exhibit a
markedly reduced grain yield due to a lower degree of
methylesterification and blocked sucrose translocation.
OsQUA2 is indispensable for maintaining a high degree of
HG methylesterification in the cell walls of sieve elements in
culms, which might be required for efficient sucrose transport
and grain filling (Xu et al., 2017). These findings confirm the
notion that efficient sucrose transport and partitioning are
critical for normal grain filling.

Important QTLs controlling grain filling
A large variation in grain filling can be found among natural
crop varieties. QTLs are the major contributors to this varia-
tion. Several QTLs have been shown to affect grain filling in
rice. GRAIN‐FILLING RATE1 (GFR1), the major QTL for grain
filling rate, encodes a membrane‐localized protein and is
constitutively expressed. The GFR1Ludao allele improves the
grain‐filling rate mainly by increasing the initial Rubisco
activity in the Calvin‐Benson cycle. GIF1 is upregulated in
NIL‐GFR1Ludao, which promotes sucrose unloading during
the grain filling stage (Liu et al., 2019). Nevertheless,
the mechanism by which GFR1 controls grain filling
requires further exploration. Another group found that EDR1
(ENDOSPERM DEVELOPMENT IN RICE) underlies the
QTL responsible for differential endosperm development
between upland and paddy rice; EDR1 encodes UDP‐
glucosyltransferase. The EDR1YZN allele from upland rice
shows reduced UDP‐glucosyltransferase activity compared
to the EDR1YD1 allele from paddy rice, resulting in abnormal
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endosperm development, incomplete grain filling, and poor
grain quality (Wu et al., 2022).

GW2, a rice QTL affecting both grain width and weight,
encodes a RING‐type protein with E3 ubiquitin ligase activity.
The loss of GW2 function results in larger spikelet hulls with
increased cell number, as well as an accelerated grain‐filling
rate (Song et al., 2007). GRAIN SIZE 5 (GS5) encodes a
putative serine carboxypeptidase that positively regulates
grain size by enhancing grain width, grain filling, and grain
weight (Li et al., 2011). GRAIN LENGTH 3 (qGL3) encodes a
putative protein phosphatase with a Kelch‐like repeat domain
(OsPPKL1). The qgl3 allele exhibits a long grain phenotype,
with a favorable effect on grain filling and grain weight (Zhang
et al., 2012b). Both GS5 and qGL3 might determine grain size
and filling via BR pathways. Enhanced GS5 expression pre-
vents the endocytosis of OsBAK1‐7 by competitively inhibiting
the interaction between OsBAK1‐7 and MEMBRANE STE-
ROID BINDING PROTEIN 1 (OsMSBP1), which may explain
the positive association between grain size and GS5 ex-
pression (Xu et al., 2015). qGL3 interacts with, dephosphor-
ylates, and stabilizes OsGSK3 (Glycogen synthase kinase‐3),
thereby suppressing BR signaling. The Osgsk3 mutant shows
increased grain length and weight, confirming the role of
OsGSK3 in regulating seed development (Gao et al., 2019).

Genes underlying differential grain filling between
superior and inferior spikelets
Several studies have attempted to explain the mechanism
responsible for superior and inferior spikelets during grain
filling. Sahu et al. reported that cell cycle events and the
expression of cell cycle regulators are factors determining
differential grain filling in rice spikelets (Sahu et al., 2021). The
differential filling rate between superior and inferior spikelets
has also been associated with changes in the expression of
OsCIN4, INV1, OsINV3, SUS1, and AGPL2 (Ishimaru et al.,
2005). Grain filling in inferior spikelets is restricted by that in
superior spikelets, as the limited supply of assimilates and
plant hormones results in poor grain filling of inferior spike-
lets. Indeed, removing superior spikelets improved grain
filling in inferior spikelets by increasing sucrose and phyto-
hormone levels (You et al., 2016).

Ethylene is also involved in the differential grain filling of
superior and inferior spikelets. Ethylene biosynthesis genes
are expressed at higher levels in inferior spikelets, leading to
a significant increase in the ethylene evolution rate. The high
concentrations of ethylene in inferior spikelets suppress the
expression of starch biosynthesis genes and the activities of
their encoded enzymes, and leading to poor grain filling (Zhu
et al., 2011). Another study revealed that the initiation of grain
filling occurred much later in inferior than superior spikelets
due to poor sucrose unloading ability and the low efficiency
of sucrose‐to‐starch metabolism (Jiang et al., 2021). Deng
et al. showed that higher IAA contents are important for the
initiation of grain filling in superior spikelets, suggesting that
this auxin might function as a signal to control grain filling.
The differential IAA levels between superior and inferior

spikelets affect dorsal vascular cell development and sucrose
unloading from the phloem, which is important for grain filling
(Deng et al., 2021).

Although the poor grain filling of inferior spikelets has
been associated with many physiological changes, the
underlying molecular mechanisms remain obscure. A
transcriptome‐wide analysis determined that ASPARTIC
PROTEASE 1 (OsASP1) reaches an earlier and higher
transcriptional peak in inferior than superior spikelets. The
mutation of OsASP1 abolished the difference in grain weight
between superior and inferior spikelets, indicating that
OsASP1 is essential for balancing caryopsis development
in superior and inferior spikelets. OsASP1 interacts with
OsTIF1 (TAA1 transcriptional inhibition factor 1) to abolish
its inhibition of TRYPTOPHAN AMINOTRANSFERASE OF
ARABIDOPSIS 1 (OsTAA1), which is responsible for IAA
biosynthesis. The OsASP1‐OsTIF1 complex maintains IAA‐
mediated apical dominance between superior and inferior
spikelets. In turn, IAA reduces the interaction of OsASP1 with
OsTIF1 to form a feedback loop, which further fine‐tunes
differences in IAA levels between superior and inferior spi-
kelets (Chang et al., 2020).

Another study demonstrated that GF14f, a member of the
14‐3‐3 protein family, shows different temporal and spatial
expression patterns between superior and inferior spikelets.
Suppressing GF14f gene expression by RNA interference
resulted in increased grain length and weight. Thus, the
higher abundance of GF14f in inferior spikelets may be re-
sponsible for their poor grain filling. GF14f might affect grain
filling by interacting with enzymes involved in sucrose
breakdown, starch biosynthesis, the tricarboxylic acid cycle,
and glycolysis (Zhang et al., 2019c). Finally, different levels of
AGPase small subunit 2 (AGPS2) accumulate in superior
versus inferior rice spikelets, as revealed by proteomic anal-
ysis. AGPS2 binds to SBE, PUL, and DBE, as well as GF14e,
which might be involved in the poor grain filling of inferior
spikelets (Zhang et al., 2019c; Zhao et al., 2021).

FUTURE PERSPECTIVES

In the past decades, genes for different yield components
have been identified, increasing our understanding of yield
formation and providing the opportunity to further improve
the yield potential of crops. Nevertheless, yield improvement
is still a critical issue in agricultural production, as the pro-
duction of major crops must double by 2050 in order to
satisfy the needs of the increasing population (Ray et al.,
2013). To break the yield ceiling, the New Plant Type strategy
has been proposed to breed rice varieties with large panicles.
Indeed, several super rice varieties with great yield potential
have been bred using this strategy (Qian et al., 2016; Zeng
et al., 2017). However, super rice varieties frequently do not
meet their expected yield potentials due to poor grain‐filling
ability, as evidenced by a low grain‐filling rate and many
unfilled grains (Yang and Zhang, 2010). Therefore,
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understanding the mechanisms of grain filling in cereals will
greatly contribute to further increasing yields during crop
cultivation and breeding.

Both cultivation and breeding strategies can be used
to improve grain filling, which involves managing external
environmental conditions and plant genetics, respectively
(Figure 4). The proper control of mild soil drying in both rice
and wheat during the later grain‐filling period can enhance
whole‐plant senescence and the remobilization of carbon
from vegetative tissues to grains, leading to better grain filling
(Yang and Zhang, 2006). Therefore, it would be worthwhile
practicing this method in the field using a variety of cultivars
and planting locations. In addition, more field tests can be
carried out to clarify the effects of N and P fertilizers on cereal
grain filling, as most previous studies have not provided clear
conclusions. High N fertilization causes the so‐called “stay‐
green” phenomenon due to delayed grain filling, but mild soil
drying can overcome this effect (Yang and Zhang, 2006),
indicating that the combined application of different culti-
vation methods could improve grain filling. Although many
studies have confirmed that applying different phyto-
hormones promotes grain filling (Yang et al., 2001; Wu et al.,
2008; Tang et al., 2009; Tamaki et al., 2015; Panda et al.,

2018), suitable concentrations for use in the field require
further study. Moreover, the widespread application of phy-
tohormones in the field is difficult due to the high cost of this
treatment, as most phytohormones are expensive. Never-
theless, it might be possible to identify less costly chemicals
that promote grain filling in the future.

Compared to the cultivation strategy, the breeding
strategy could be more efficient for long‐term application.
The grain filling ability of different cereals could be improved
by introgressing beneficial genes. QTLs are ideal breeding
targets, but little attention has been paid to identifying QTLs
for grain filling traits, possibly due to the lack of efficient
methods for trait evaluation. Rice QTLs strongly associated
with increased filling percentage per panicle have been de-
tected on chromosomes 8 and 12. These two QTLs overlap
with QTLs for NSC content in culms and leaf sheaths during
grain filling (Takai et al., 2005). Another study attempted to
identify QTLs responsible for grain filling rate in 95 rice vari-
eties by time‐course association mapping (Liu et al., 2015a).
However, no common QTLs for grain filling were identified in
either study, pointing to the complexity of grain filling control
among rice varieties. As mentioned above, GFR1 and EDR1
are the only two known QTLs directly involved in controlling

Figure 4. Strategies for improving cereals grain filling in breeding and cultivation.
We raise both breeding and cultivation strategies for improving grain filling in cereals. For cultivation, proper control of soil drying, adequate nitrogen and
phosphate fertilizers, and application of different promotive chemicals could improve grain filling. For breeding, quantitative trait loci (QTLs) are the ideal
targets for molecular assisted selection (MAS). Additionally, useful alleles either for the positive regulators or negative regulators of grain filling can be fast
generated by gene editing techniques.
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grain filling. The favorable allele of GFR1 is an ideal target for
improving grain filling in rice breeding. Some grain size QTLs
also improve grain filling, including TGW6, qGL11, GS5, GW2,
and qGL3 (Song et al., 2007; Li et al., 2011; Zhang et al.,
2012b; Ishimaru et al., 2013; Wang et al., 2021a), representing
other possible selection targets for improving grain filling.
Nevertheless, the efficiency of these QTLs for promoting grain
filling requires further validation in different genetic back-
grounds, as their effects might require the increased pro-
duction of assimilates to support the filling of larger grains.

Among the genes identified from mutant studies or by re-
verse genetics, some can be used to increase grain filling via
bioengineering. Enhanced grain filling and grain weight can be
achieved by overexpressing positive regulators or knocking
out negative regulators of grain filling. Here, we propose
positive and negative regulators of grain filling that are suitable
for bioengineering based on the phenotypic changes of dif-
ferent transgenic plants. The positive regulators include
OsACOT, sterol C‐22 hydroxylase (CYP), GIF1/Mn1, Gln1‐3/
Gln1‐4, OsPHO1;2, OsNAC23, FLO19, ZmABI19, ZmbZIP29
and AGPase genes, while the negative regulators include
miR1432, ABA8ox2, OsNAP, TPP1, and GF14f (Figure 4).
Many reports only describe the phenotypes of mutants with
poor grain filling, such as mutants of genes involved in sugar
transport (Scofield et al., 2002; Sosso et al., 2015; Ma et al.,
2017; Yang et al., 2022a). It would be worth examining the
contributions of these genes to grain filling via overexpression
in the future. ABA8ox2 and GF14f could be ideal targets to
balance grain filling between superior and inferior spikelets,
and their contributions could be validated by repressing their
activities, especially in varieties with large panicles.

Either RNA interference or overexpression of target genes
requires vector fragments to be integrated into the genome,
raising safety issues associated with transgenic plants. Rapid
breakthroughs in gene editing technology have made it
possible to easily knock out negative regulators of grain filling
without producing transgenic plants. Using this technique,
novel alleles of different QTLs can be quickly generated in
different elite cultivar backgrounds (Shen et al., 2018; Mao
et al., 2021). In addition to coding regions, the promoter re-
gions of genes can also be edited to generate useful alleles
with altered expression patterns, as demonstrated by the
efficient editing of the promoters of SCM3, IPA1, Wx, and
GWD1 in rice (Cui et al., 2020; Zeng et al., 2020; Wang et al.,
2021b; Song et al., 2022) and SIWUS and SICLV3 in tomato
(Solanum lycopersicum) (Rodriguez‐Leal et al., 2017). Differ-
ential phenotypic variation can be identified among the
edited plants, making it easy to identify optimal lines. It is
possible to generate edited lines with elevated expression of
these positive regulators of grain filling, thereby creating
useful alleles. Upstream open reading frame (uORF) editing is
another way to enhance gene function, as a functional uORF
affects the translation of a protein from a downstream ORF.
Successful uORF editing has been performed in Arabidopsis
thaliana (AtBRI1), lettuce (LsGGP1 and LsGGP2), and rice
(DTH2). Phenotypic changes matching enhanced gene

function were observed in the edited lines (Zhang et al., 2018a;
Liu et al., 2021), confirming the efficiency of the uORF editing
strategy. We suggest that the positive regulators of grain filling
mentioned above would be ideal targets for uORF editing.

Finally, genome information for a large number of rice
germplasms has been generated by high‐throughput re‐
sequencing (Huang et al., 2012; Wang et al., 2018),
and it provides the opportunity to identify superior alleles of
positive regulators of grain filling, which produces similar
effects of gene overexpression. Although current pub-
lications provide gene lists that can be searched to create
useful alleles for breeding applications, it will be important to
identify additional genes that regulate grain filling, as the
molecular network of grain filling control is still unclear and
requires further exploration.
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